No Arabic abstract
Recently, a new class of so-called emph{hierarchical thresholding algorithms} was introduced to optimally exploit the sparsity structure in joint user activity and channel detection problems. In this paper, we take a closer look at the user detection performance of such algorithms under noise and relate its performance to the classical block correlation detector with orthogonal signatures. More specifically, we derive a lower bound for the diversity order which, under suitable choice of the signatures, equals that of the block correlation detector. Surprisingly, in specific parameter settings non-orthogonal pilots, i.e. pilots where (cyclically) shift
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measurement) matrix corresponding to this setup, application of standard CS algorithms and analysis methodology does not apply. By recognizing that the channel possesses a special structure, termed hierarchical sparsity, we propose an efficient algorithm that explicitly takes into account this property. In addition, by extending the standard CS analysis methodology to hierarchical sparse vectors, we provide a rigorous analysis of the algorithm performance in terms of estimation error as well as number of pilot subcarriers required to achieve it. Small training overhead, in turn, means higher number of supported users in a cell and potentially improved pilot decontamination. We believe, that this is the first paper that draws a rigorous connection between the hierarchical framework and Kronecker measurements. Numerical results verify the advantage of employing the proposed approach in this setting instead of standard CS algorithms.
This paper analyzes the effective capacity of delay constrained machine type communication (MTC) networks operating in the finite blocklength regime. First, we derive a closed-form mathematical approximation for the effective capacity in quasi-static Rayleigh fading channels. We characterize the optimum error probability to maximize the concave effective capacity function with reliability constraint and study the effect of signal-to-interference-plus-noise ratio (SINR) variations for different delay constraints. The trade off between reliability and effective capacity maximization reveals that we can achieve higher reliability with limited sacrifice in effective capacity specially when the number of machines is small. Our analysis reveals that SINR variations have less impact on effective capacity for strict delay constrained networks. We present an exemplary scenario for massive MTC access to analyze the interference effect proposing three methods to restore the effective capacity for a certain node which are power control, graceful degradation of delay constraint and joint compensation. Joint compensation combines both power control and graceful degradation of delay constraint, where we perform maximization of an objective function whose parameters are determined according to delay and SINR priorities. Our results show that networks with stringent delay constraints favor power controlled compensation and compensation is generally performed at higher costs for shorter packets.
Exact recovery of $K$-sparse signals $x in mathbb{R}^{n}$ from linear measurements $y=Ax$, where $Ain mathbb{R}^{mtimes n}$ is a sensing matrix, arises from many applications. The orthogonal matching pursuit (OMP) algorithm is widely used for reconstructing $x$. A fundamental question in the performance analysis of OMP is the characterizations of the probability of exact recovery of $x$ for random matrix $A$ and the minimal $m$ to guarantee a target recovery performance. In many practical applications, in addition to sparsity, $x$ also has some additional properties. This paper shows that these properties can be used to refine the answer to the above question. In this paper, we first show that the prior information of the nonzero entries of $x$ can be used to provide an upper bound on $|x|_1^2/|x|_2^2$. Then, we use this upper bound to develop a lower bound on the probability of exact recovery of $x$ using OMP in $K$ iterations. Furthermore, we develop a lower bound on the number of measurements $m$ to guarantee that the exact recovery probability using $K$ iterations of OMP is no smaller than a given target probability. Finally, we show that when $K=O(sqrt{ln n})$, as both $n$ and $K$ go to infinity, for any $0<zetaleq 1/sqrt{pi}$, $m=2Kln (n/zeta)$ measurements are sufficient to ensure that the probability of exact recovering any $K$-sparse $x$ is no lower than $1-zeta$ with $K$ iterations of OMP. For $K$-sparse $alpha$-strongly decaying signals and for $K$-sparse $x$ whose nonzero entries independently and identically follow the Gaussian distribution, the number of measurements sufficient for exact recovery with probability no lower than $1-zeta$ reduces further to $m=(sqrt{K}+4sqrt{frac{alpha+1}{alpha-1}ln(n/zeta)})^2$ and asymptotically $mapprox 1.9Kln (n/zeta)$, respectively.
In this paper, we investigate the performance of cell-free massive MIMO systems with massive connectivity. With the generalized approximate message passing (GAMP) algorithm, we obtain the minimum mean-squared error (MMSE) estimate of the effective channel coefficients from all users to all access points (APs) in order to perform joint user activity detection and channel estimation. Subsequently, using the decoupling properties of MMSE estimation for large linear systems and state evolution equations of the GAMP algorithm, we obtain the variances of both the estimated channel coefficients and the corresponding channel estimation error. Finally, we study the achievable uplink rates with zero-forcing (ZF) detector at the central processing unit (CPU) of the cell-free massive MIMO system. With numerical results, we analyze the impact of the number of pilots used for joint activity detection and channel estimation, the number of APs, and signal-to-noise ratio (SNR) on the achievable rates.
Novel sparse reconstruction algorithms are proposed for beamspace channel estimation in massive multiple-input multiple-output systems. The proposed algorithms minimize a least-squares objective having a nonconvex regularizer. This regularizer removes the penalties on a few large-magnitude elements from the conventional l1-norm regularizer, and thus it only forces penalties on the remaining elements that are expected to be zeros. Accurate and fast reconstructions can be achieved by performing gradient projection updates within the framework of difference of convex functions (DC) programming. A double-loop algorithm and a single-loop algorithm are proposed via different DC decompositions, and these two algorithms have distinct computation complexities and convergence rates. Then, an extension algorithm is further proposed by designing the step sizes of the single-loop algorithm. The extension algorithm has a faster convergence rate and can achieve approximately the same level of accuracy as the proposed double-loop algorithm. Numerical results show significant advantages of the proposed algorithms over existing reconstruction algorithms in terms of reconstruction accuracies and runtimes. Compared to the benchmark channel estimation techniques, the proposed algorithms also achieve smaller mean squared error and higher achievable spectral efficiency.