A new class of efficient randomized benchmarking protocols


Abstract in English

Randomized benchmarking is a technique for estimating the average fidelity of a set of quantum gates. For general gatesets, however, it is difficult to draw robust conclusions from the resulting data. Here we propose a new method based on representation theory that has little experimental overhead and applies to a broad class of benchmarking problems. As an example, we apply our method to a gateset that includes the $T$-gate, and analyze a new interleaved benchmarking protocol that extracts the average fidelity of a 2-qubit Clifford gate using only single-qubit Clifford gates as reference.

Download