Do you want to publish a course? Click here

Spin-unrestricted self-energy embedding theory

51   0   0.0 ( 0 )
 Added by Dominika Zgid
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new theoretical approach, unrestricted self-energy embedding theory (USEET) that is a Greens function embedding theory used to study problems in which an open, embedded system exchanges electrons with the environment. USEET has a high potential to be used in studies of strongly correlated systems with odd number of electrons and open shell systems such as transition metal complexes important in inorganic chemistry. In this paper, we show that USEET results agree very well with common quantum chemistry methods while avoiding typical bottlenecks present in these method.



rate research

Read More

Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. In this letter, we generalize a Greens function QM/QM embedding method called self-energy embedding theory (SEET) that has the potential to be successfully employed to treat large active spaces. In generalized SEET, active orbitals are grouped into intersecting groups of few orbitals allowing us to perform multiple parallel calculations yielding results comparable to the full active space treatment. We examine generalized SEET on a series of examples and discuss a hierarchy of systematically improvable approximations.
We present an implementation of the self-energy embedding theory (SEET) for periodic systems and provide a fully self-consistent embedding solution for a simple realistic periodic problem - 1D crystalline hydrogen - that displays many of the features present in complex real materials. For this system, we observe a remarkable agreement between our finite temperature periodic implementation results and well established and accurate zero temperature auxiliary quantum Monte Carlo data extrapolated to thermodynamic limit. We discuss differences and similarities with other Greens function embedding methods and provide the detailed algorithmic steps crucial for highly accurate and reproducible results.
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using density-matrix embedding theory (DMET). This approximate interacting wave function is constructed by using a projection determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary system the same as the approximate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation of the interacting-to-non-interacting mapping of the Kohn-Sham approach to DFT. Yet other choices are possible and allow to connect DMET with other DFTs such as kinetic-energy DFT or reduced density-matrix functional theory. In this work we give a detailed review of the basics of the DMET procedure from a DFT perspective and show how both approaches can be used to supplement each other. We do so explicitly for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the one that was originally presented. Among others we highlight how the mappings of DFTs can be used to identify uniquely defined auxiliary systems and auxiliary projections in DMET and how to construct approximations for different DFTs using DMET inspired projections. Such alternative approximation strategies become especially important for DFTs that are based on non-linearly coupled observables such as kinetic-energy DFT, where the Kohn-Sham fields are no longer simply obtainable by functional differentiation of an energy expression, or for reduced density-matrix functional theories, where a straightforward Kohn-Sham construction is not feasible.
We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.
Employing a local formula for the electron-electron interaction energy, we derive a self-consistent approximation for the total energy of a general $N$-electron system. Our scheme works as a local variant of the Thomas-Fermi approximation and yields the total energy and density as a function of the external potential, the number of electrons, and the chemical potential determined upon normalization. Our tests for Hookes atoms, jellium, and model atoms up to $sim 1000$ electrons show that reasonable total energies can be obtained with almost a negligible computational cost. The results are also consistent in the important large-$N$ limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا