Statistical properties of paired fixed fields


Abstract in English

The initial conditions of cosmological simulations are commonly drawn from a Gaussian ensemble. The limited number of modes inside a simulation volume gives rise to statistical fluctuations known as textit{sample variance}, limiting the accuracy of simulation predictions. Fixed fields offer an alternative initialization strategy; they have the same power spectrum as standard Gaussian fields but without intrinsic amplitude scatter at linear order. Paired fixed fields consists of two fixed fields with opposite phases that cancel phase correlations which otherwise induce second-order scatter in the non-linear power spectrum. We study the statistical properties of those fields for 19 different quantities at different redshifts through a large set of 600 N-body and 506 state-of-the-art magneto-hydrodynamic simulations covering a wide range of scales, mass and spatial resolutions. We find that paired fixed simulations do not introduce a bias on any of the examined quantities. We quantify the statistical improvement brought by these simulations, over standard ones, on different power spectra such as matter, halos, CDM, gas, stars, black-holes and magnetic fields, finding that they can reduce their variance by factors as large as $10^6$. We quantify the improvement achieved by fixing and by pairing, showing that sample variance in some quantities can be highly suppressed by pairing after fixing. Paired fixed simulations do not change the scatter in quantities such as the probability distribution function of matter density, or the halo, void or stellar mass functions. We argue that procedures aiming at reducing the sample variance of those quantities are unlikely to work. Our results show that paired fixed simulations do not affect either mean relations or scatter of galaxy properties, and suggest that the information embedded in 1-pt statistics is highly complementary to that in clustering.

Download