Do you want to publish a course? Click here

Starfruit-like nodal semimetal to Dirac and Weyl semimetal state in CaAuAs

124   0   0.0 ( 0 )
 Added by Sougata Mardanya
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Band-crossings occurring on a mirror plane are compelled to form a nodal loop in the momentum space without spin-orbit coupling (SOC). In the presence of other equivalent mirror planes, multiple such nodal loops can combine to form interesting nodal-link structures. Here, based on first-principles calculations and an effective $mathbf{k.p}$ model analysis, we show that CaAuAs hosts a unique starfruit-like nodal-link structure in the bulk electronic dispersion in the absence of SOC. This nodal-link is comprised of three nodal loops, which cross each other at the time-reversal-invariant momentum point $A$. When the SOC is turned on, the nodal loops are gapped out, resulting in a stable Dirac semimetal state with a pair of Dirac points along the $mathrm{Gamma-A}$ direction in the Brillouin zone. The Dirac points are protected by the combination of time reversal, inversion, and $C_3$ rotation symmetries. We show how a systematic elimination of the symmetry constraints yields a Weyl semimetal and eventually a topological insulator state.



rate research

Read More

Dirac semimetal (DSM) hosts four-fold degenerate isolated band-crossing points with linear dispersion, around which the quasiparticles resemble the relativistic Dirac Fermions. It can be described by a 4 * 4 massless Dirac Hamiltonian which can be decomposed into a pair of Weyl points or gaped into an insulator. Thus, crystal symmetry is critical to guarantee the stable existence. On the contrary, by breaking crystal symmetry, a DSM may transform into a Weyl semimetal (WSM) or a topological insulator (TI). Here, by taking hexagonal LiAuSe as an example, we find that it is a starfruit shaped multiple nodal chain semimetal in the absence of spin-orbit coupling(SOC). In the presence of SOC, it is an ideal DSM naturally with the Dirac points locating at Fermi level exactly, and it would transform into WSM phase by introducing external Zeeman field or by magnetic doping with rare-earth atom Sm. It could also transform into TI state by breaking rotational symmetry. Our studies show that DSM is a critical point for topological phase transition, and the conclusion can apply to most of the DSM materials, not limited to the hexagonal material LiAuSe.
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transport properties invite studies of relativistic physics in the solid state where their linearly dispersing Dirac bands cross at continuous lines with four-fold degeneracy. In materials studied up to now, the four-fold degeneracy, however, has been vulnerable to suppression by the ubiquitous spin-orbit coupling (SOC). Despite the current effort to discover 3D DNLSs that are robust to SOC by theory, positive experimental evidence is yet to emerge. In 2D DNLSs, because of the decreased total density of states as compared with their 3D counterparts, it is anticipated that their physical properties would be dominated by the electronic states defined by the DNL. It has been even more challenging, however, to discover robust 2D DNLSs against SOC because of their lowered symmetry; no such materials have yet been predicted by theory. By combining molecular beam epitaxy growth, STM, nc-AFM characterisation, with DFT calculations and space group theory analysis, here we reveal a novel class of 2D crystalline DNLSs that host the exact symmetry that protects them against SOC. The discovered quantum material is a brick phase 3-AL Bi(110), whose symmetry protection and thermal stability are imparted by the compressive vdW epitaxial growth on black phosphorus substrates. The BP substrate templates the growth of 3-AL Bi(110) nano-islands in a non-symmorphic space group structure. This crystalline symmetry protects the DNL electronic phase against SOC independent of any orbital or elemental factors. We theoretically establish that this intrinsic symmetry imparts a general, robust protection of DNL in a series of isostructural 2D quantum materials.
Owing to the coupling between open Fermi arcs on opposite surfaces, topological Dirac semimetals exhibit a new type of cyclotron orbit in the surface states known as Weyl orbit. Here, by lowering the carrier density in Cd3As2 nanoplates, we observe a crossover from multiple- to single-frequency Shubnikov-de Haas (SdH) oscillations when subjected to out-of-plane magnetic field, indicating the dominant role of surface transport. With the increase of magnetic field, the SdH oscillations further develop into quantum Hall state with non-vanishing longitudinal resistance. By tracking the oscillation frequency and Hall plateau, we observe a Zeeman-related splitting and extract the Landau level index as well as sub-band number. Different from conventional two-dimensional systems, this unique quantum Hall effect may be related to the quantized version of Weyl orbits. Our results call for further investigations into the exotic quantum Hall states in the low-dimensional structure of topological semimetals.
Topological quantum materials, including topological insulators and superconductors, Dirac semimetals and Weyl semimetals, have attracted much attention recently for their unique electronic structure, spin texture and physical properties. Very lately, a new type of Weyl semimetals has been proposed where the Weyl Fermions emerge at the boundary between electron and hole pockets in a new phase of matter, which is distinct from the standard type I Weyl semimetals with a point-like Fermi surface. The Weyl cone in this type II semimetals is strongly tilted and the related Fermi surface undergos a Lifshitz transition, giving rise to a new kind of chiral anomaly and other new physics. MoTe2 is proposed to be a candidate of a type II Weyl semimetal; the sensitivity of its topological state to lattice constants and correlation also makes it an ideal platform to explore possible topological phase transitions. By performing laser-based angle-resolved photoemission (ARPES) measurements with unprecedentedly high resolution, we have uncovered electronic evidence of type II semimetal state in MoTe2. We have established a full picture of the bulk electronic states and surface state for MoTe2 that are consistent with the band structure calculations. A single branch of surface state is identified that connects bulk hole pockets and bulk electron pockets. Detailed temperature-dependent ARPES measurements show high intensity spot-like features that is ~40 meV above the Fermi level and is close to the momentum space consistent with the theoretical expectation of the type II Weyl points. Our results constitute electronic evidence on the nature of the Weyl semimetal state that favors the presence of two sets of type II Weyl points in MoTe2.
329 - N. Xu , Z. J. Wang , A. P. Weber 2016
A new type of Weyl semimetal state, in which the energy values of Weyl nodes are not the local extrema, has been theoretically proposed recently, namely type II Weyl semimetal. Distinguished from type I semimetal (e.g. TaAs), the Fermi surfaces in a type II Weyl semimetal consist of a pair of electron and hole pockets touching at the Weyl node. In addition, Weyl fermions in type II Weyl semimetals violate Lorentz invariance. Due to these qualitative differences distinct spectroscopy and magnetotransport properties are expected in type II Weyl semimetals. Here, we present the direct observation of the Fermi arc states in MoTe2 by using angle resolved photoemission spectroscopy. Two arc states are identified for each pair of Weyl nodes whoes surface projections of them possess single topological charge, which is a unique property for type II Weyl semimetals. The experimentally determined Fermi arcs are consistent with our first principle calculations. Our results unambiguously establish that MoTe2 is a type II Weyl semimetal, which serves as a great test bed to investigate the phenomena of new type of Weyl fermions with Lorentz invariance violated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا