No Arabic abstract
We present the Hubble Deep UV Legacy Survey (HDUV), a 132 orbit imaging program with the WFC3/UVIS camera onboard the Hubble Space Telescope (HST). The HDUV extends and builds on the few previous UV imaging surveys in the two GOODS/CANDELS-Deep fields to provide deep images over a total area of ~100 arcmin2 in the two filters F275W and F336W. Our release also includes all the F275W imaging data taken by the CANDELS survey, which were aligned using a novel approach and combined with the HDUV survey data. By reaching depths of 27.5-28.0 mag (5sigma, in 0.4 apertures), these are the deepest high-resolution UV data over such a large area taken to date. Such unique UV imaging enables a wide range of science by the community. Among the main goals of the HDUV survey are: (1) provide a complete sample of faint star-forming galaxies at z~1-3, (2) constrain the ionizing photon escape fraction from galaxies at z~2-3, and (3) track the build-up of bulges and the disappearance of clumpy disk galaxies through reliable internal stellar population properties at sub-kpc resolution out to z~3. The addition of the HDUV data further enhances the legacy value of the two GOODS/CANDELS-Deep fields, which now include deep 11-band HST imaging as well as very deep ancillary data from X-ray to radio, enabling unique multi-wavelength studies. Here, we provide an overview of the survey design, describe the data reduction, and highlight a few basic analyses on the images which are released to the community as high level science products via the Mikulski Archive for Space Telescopes (MAST).
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ~kpc-size clustered structures. Five-band imaging, from the near-ultraviolet to the I-band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the Wide Field Camera 3 are: F275W(2,704 A), F336W(3,355 A), F438W(4,325 A), F555W(5,308 A), and F814W(8,024 A); the parallel observations with the Advanced Camera for Surveys use the filters: F435W(4,328 A), F606W(5,921 A), and F814W(8,057 A). The multi-band images are yielding accurate recent (<~50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.
We build on the evidence provided by our Legacy Survey of Galactic globular clusters (GC) to submit to a crucial test four scenarios currently entertained for the formation of multiple stellar generations in GCs. The observational constraints on multiple generations to be fulfilled are manifold, including GC specificity, ubiquity, variety, predominance, discreteness, supernova avoidance, p-capture processing, helium enrichment and mass budget. We argue that scenarios appealing to supermassive stars, fast rotating massive stars and massive interactive binaries violate in an irreparable fashion two or more among such constraints. Also the scenario appealing to AGB stars as producers of the material for next generation stars encounters severe difficulties, specifically concerning the mass budget problem and the detailed chemical composition of second generation stars. We qualitatively explore ways possibly allowing one to save the AGB scenario, specifically appealing to a possible revision of the cross section of a critical reaction rate destroying sodium, or alternatively by a more extensive exploration of the vast parameter space controlling the evolutionary behavior of AGB stellar models. Still, we cannot ensure success for these efforts and totally new scenarios may have to be invented to understand how GCs formed in the early Universe.
The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous surveys 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.
As part of the Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters, 110 parallel fields were observed with the Wide Field Channel of the Advanced Camera for Surveys, in the outskirts of 48 globular clusters, plus the open cluster NGC 6791. Totalling about $0.3$ square degrees of observed sky, this is the largest homogeneous Hubble Space Telescope photometric survey of Galalctic globular clusters outskirts to date. In particular, two distinct pointings have been obtained for each target on average, all centred at about $6.5$ arcmin from the cluster centre, thus covering a mean area of about $23,{rm arcmin^{2}}$ for each globular cluster. For each field, at least one exposure in both F475W and F814W filters was collected. In this work, we publicly release the astrometric and photometric catalogues and the astrometrised atlases for each of these fields.
We present six galaxies at z~2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multi-wavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high -- typically >60% (>13% for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies to show high escape fraction. These six galaxies comprise the largest sample yet of LyC leaking candidates at z~2 whose inferred LyC flux has been cleanly observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus (AGN), two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. This suggests an AGN-aided pathway for LyC escape from these sources. Extensive multi-wavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage -- namely, the [OIII]/[OII] line ratio and the H$beta-$UV slope diagram. High-resolution spectroscopic followup of our candidates will help constrain such indirect methods which are our only hope of studying $f_{esc}$ at z~5-9 in the fast-approaching era of the James Webb Space Telescope.