Semiclassical diffraction by conormal potential singularities


Abstract in English

We establish propagation of singularities for the semiclassical Schrodinger equation, where the potential is conormal to a hypersurface. We show that semiclassical wavefront set propagates along generalized broken bicharacteristics, hence reflection of singularities may occur along trajectories reaching the hypersurface transversely. The reflected wavefront set is weaker, however, by a power of $h$ that depends on the regularity of the potential. We also show that for sufficiently regular potentials, wavefront set may not stick to the hypersurface, but rather detaches from it at points of tangency to travel along ordinary bicharacteristics.

Download