Do you want to publish a course? Click here

Indices of O-regular variation for weight functions and weight sequences

85   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A plethora of spaces in Functional Analysis (Braun-Meise-Taylor and Carleman ultradifferentiable and ultraholomorphic classes; Orlicz, Besov, Lipschitz, Lebesque spaces, to cite the main ones) are defined by means of a weighted structure, obtained from a weight function or sequence subject to standard conditions entailing desirable properties (algebraic closure, stability under operators, interpolation, etc.) for the corresponding spaces. The aim of this paper is to stress or reveal the true nature of these diverse conditions imposed on weights, appearing in a scattered and disconnected way in the literature: they turn out to fall into the framework of O-regular variation, and many of them are equivalent formulations of one and the same feature. Moreover, we study several indices of regularity/growth for both functions and sequences, which allow for the rephrasing of qualitative properties in terms of quantitative statements.



rate research

Read More

We characterize the equality between ultradifferentiable function classes defined in terms of abstractly given weight matrices and in terms of the corresponding matrix of associated weight functions by using new growth indices. These indices, defined by means of weight sequences and (associated) weight functions, are extending the notion of O-regular variation to a mixed setting. Hence we are extending the known comparison results concerning classes defined in terms of a single weight sequence and of a single weight function and give also these statements an interpretation expressed in O-regular variation.
We prove an extension theorem for ultraholomorphic classes defined by so-called Braun-Meise-Taylor weight functions and transfer the proofs from the single weight sequence case from V. Thilliez [28] to the weight function setting. We are following a different approach than the results obtained in [11], more precisely we are working with real methods by applying the ultradifferentiable Whitney-extension theorem. We are treating both the Roumieu and the Beurling case, the latter one is obtained by a reduction from the Roumieu case.
186 - M.V. Bondarko 2016
This paper is dedicated to triangulated categories endowed with weight structures (a new notion; D. Pauksztello has independently introduced them as co-t-structures). This axiomatizes the properties of stupid truncations of complexes in $K(B)$. We also construct weight structures for Voevodskys categories of motives and for various categories of spectra. A weight structure $w$ defines Postnikov towers of objects; these towers are canonical and functorial up to morphisms that are zero on cohomology. For $Hw$ being the heart of $w$ (in $DM_{gm}$ we have $Hw=Chow$) we define a canonical conservative weakly exact functor $t$ from our $C$ to a certain weak category of complexes $K_w(Hw)$. For any (co)homological functor $H:Cto A$ for an abelian $A$ we construct a weight spectral sequence $T:H(X^i[j])implies H(X[i+j])$ where $(X^i)=t(X)$; it is canonical and functorial starting from $E_2$. This spectral sequences specializes to the usual (Delignes) weight spectral sequences for classical realizations of motives and to Atiyah-Hirzebruch spectral sequences for spectra. Under certain restrictions, we prove that $K_0(C)cong K_0(Hw)$ and $K_0(End C)cong K_0(End Hw)$. The definition of a weight structure is almost dual to those of a t-structure; yet several properties differ. One can often construct a certain $t$-structure which is adjacent to $w$ and vice versa. This is the case for the Voevodskys $DM^{eff}_-$ (one obtains certain new Chow weight and t-structures for it; the heart of the latter is dual to $Chow^{eff}$) and for the stable homotopy category. The Chow t-structure is closely related to unramified cohomology.
82 - Jason Lo 2020
In this article, we treat stability conditions in the sense of King, Bridgeland and Bayer in a single framework. Following King, we begin with weight functions on a triangulated category, and consider increasingly specialised configurations of triangulated categories, t-structures and stability functions that give equivalent categories of stable objects. Along the way, we recover existing results in representation theory and algebraic geometry, and prove a series of new results on elliptic surfaces, including correspondence theorems for Bridgeland stability conditions and polynomial stability conditions, local finiteness and boundedness for mini-walls for Bridgeland stability conditions, isomorphisms between moduli of 1-dimensional twisted Gieseker semistable sheaves and 2-dimensional Bridgeland semistable objects, the preservation of geometric Bridgeland stability by autoequivalences on elliptic surfaces of nonzero Kodaira dimension, and solutions to Gepner equations on elliptic surfaces.
262 - Hamed Amini , Yuval Peres 2012
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weight paths between a fixed vertex and all the other vertices, as well as between any pair of vertices. Namely, for any fixed $d geq 3$, we show that the longest of these shortest-weight paths has about $hat{alpha}log n$ edges where $hat{alpha}$ is the unique solution of the equation $alpha log(frac{d-2}{d-1}alpha) - alpha = frac{d-3}{d-2}$, for $alpha > frac{d-1}{d-2}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا