Do you want to publish a course? Click here

Phase-type distributions in population genetics

81   0   0.0 ( 0 )
 Publication date 2018
  fields Biology
and research's language is English




Ask ChatGPT about the research

Probability modelling for DNA sequence evolution is well established and provides a rich framework for understanding genetic variation between samples of individuals from one or more populations. We show that both classical and more recent models for coalescence (with or without recombination) can be described in terms of the so-called phase-type theory, where complicated and tedious calculations are circumvented by the use of matrices. The application of phase-type theory consists of describing the stochastic model as a Markov model by appropriately setting up a state space and calculating the corresponding intensity and reward matrices. Formulae of interest are then expressed in terms of these aforementioned matrices. We illustrate this by a few examples calculating the mean, variance and even higher order moments of the site frequency spectrum in the multiple merger coalescent models, and by analysing the mean and variance for the number of segregating sites for multiple samples in the two-locus ancestral recombination graph. We believe that phase-type theory has great potential as a tool for analysing probability models in population genetics. The compact matrix notation is useful for clarification of current models, in particular their formal manipulation (calculation), but also for further development or extensions.



rate research

Read More

Spatial constraints such as rigid barriers affect the dynamics of cell populations, potentially altering the course of natural evolution. In this paper, we study the population genetics of Escherichia coli proliferating in microchannels with open ends. Our experiments reveal that competition among two fluorescently labeled E. coli strains growing in a microchannel generates a stripe pattern aligned with the axial direction of the channel. To account for this observation, we study a lattice population model in which reproducing cells push entire lanes of cells towards the open ends of the channel. By combining mathematical theory, numerical simulations, and experiments, we find that the fixation dynamics is extremely fast along the axial direction, with a logarithmic dependence on the number of cells per lane. In contrast, competition among lanes is a much slower process. We also demonstrate that random mutations that appear in the middle and at the boundaries of the channel are highly likely to reach fixation. By theoretically studying competition between strains of different fitness, we find that the population structure in such a spatially confined system strongly suppresses selection.
185 - Reginald D. Smith 2011
The key findings of classical population genetics are derived using a framework based on information theory using the entropies of the allele frequency distribution as a basis. The common results for drift, mutation, selection, and gene flow will be rewritten both in terms of information theoretic measurements and used to draw the classic conclusions for balance conditions and common features of one locus dynamics. Linkage disequilibrium will also be discussed including the relationship between mutual information and r^2 and a simple model of hitchhiking.
Many questions that we have about the history and dynamics of organisms have a geographical component: How many are there, and where do they live? How do they move and interbreed across the landscape? How were they moving a thousand years ago, and where were the ancestors of a particular individual alive today? Answers to these questions can have profound consequences for our understanding of history, ecology, and the evolutionary process. In this review, we discuss how geographic aspects of the distribution, movement, and reproduction of organisms are reflected in their pedigree across space and time. Because the structure of the pedigree is what determines patterns of relatedness in modern genetic variation, our aim is to thus provide intuition for how these processes leave an imprint in genetic data. We also highlight some current methods and gaps in the statistical toolbox of spatial population genetics.
Genetic studies of human traits have revolutionized our understanding of the variation between individuals, and opened the door for numerous breakthroughs in biology, medicine and other scientific fields. And yet, the ultimate promise of this area of research is still not fully realized. In this review, we highlight the major open problems that need to be solved to improve our understanding of the genetic variation underlying human traits, and by discussing these challenges provide a primer to the field. Our focus is on concrete analytical problems, both conceptual and technical in nature. We cover general issues in genetic studies such as population structure, epistasis and gene-environment interactions, data-related issues such as ethnic diversity and rare genetic variants, and specific challenges related to heritability estimates, genetic association studies and polygenic risk scores. We emphasize the interconnectedness of these open problems and suggest promising avenues to address them.
Population dynamics of a competitive two-species system under the influence of random events are analyzed and expressions for the steady-state population mean, fluctuations, and cross-correlation of the two species are presented. It is shown that random events cause the population mean of each specie to make smooth transition from far above to far below of its growth rate threshold. At the same time, the population mean of the weaker specie never reaches the extinction point. It is also shown that, as a result of competition, the relative population fluctuations do not die out as the growth rates of both species are raised far above their respective thresholds. This behavior is most remarkable at the maximum competition point where the weaker species population statistics becomes completely chaotic regardless of how far its growth rate in raised.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا