Do you want to publish a course? Click here

iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making

93   0   0.0 ( 0 )
 Added by Preethi Lahoti
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: giving adequate success rates to specifically protected groups. In contrast, the alternative paradigm of individual fairness has received relatively little attention, and this paper advances this less explored direction. The paper introduces a method for probabilistically mapping user records into a low-rank representation that reconciles individual fairness and the utility of classifiers and rankings in downstream applications. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on a variety of real-world datasets. Our experiments show substantial improvements over the best prior work for this setting.

rate research

Read More

94 - Renzhe Xu , Peng Cui , Kun Kuang 2020
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
Learning data representations that are transferable and are fair with respect to certain protected attributes is crucial to reducing unfair decisions while preserving the utility of the data. We propose an information-theoretically motivated objective for learning maximally expressive representations subject to fairness constraints. We demonstrate that a range of existing approaches optimize approximations to the Lagrangian dual of our objective. In contrast to these existing approaches, our objective allows the user to control the fairness of the representations by specifying limits on unfairness. Exploiting duality, we introduce a method that optimizes the model parameters as well as the expressiveness-fairness trade-off. Empirical evidence suggests that our proposed method can balance the trade-off between multiple notions of fairness and achieves higher expressiveness at a lower computational cost.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among individuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
Data collected about individuals is regularly used to make decisions that impact those same individuals. We consider settings where sensitive personal data is used to decide who will receive resources or benefits. While it is well known that there is a tradeoff between protecting privacy and the accuracy of decisions, we initiate a first-of-its-kind study into the impact of formally private mechanisms (based on differential privacy) on fair and equitable decision-making. We empirically investigate novel tradeoffs on two real-world decisions made using U.S. Census data (allocation of federal funds and assignment of voting rights benefits) as well as a classic apportionment problem. Our results show that if decisions are made using an $epsilon$-differentially private version of the data, under strict privacy constraints (smaller $epsilon$), the noise added to achieve privacy may disproportionately impact some groups over others. We propose novel measures of fairness in the context of randomized differentially private algorithms and identify a range of causes of outcome disparities.
We propose a novel algorithm for learning fair representations that can simultaneously mitigate two notions of disparity among different demographic subgroups in the classification setting. Two key components underpinning the design of our algorithm are balanced error rate and conditional alignment of representations. We show how these two components contribute to ensuring accuracy parity and equalized false-positive and false-negative rates across groups without impacting demographic parity. Furthermore, we also demonstrate both in theory and on two real-world experiments that the proposed algorithm leads to a better utility-fairness trade-off on balanced datasets compared with existing algorithms on learning fair representations for classification.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا