No Arabic abstract
It is shown that the ion-proton magnetosphere is unstable in a limited area of the P - Pdot plane against transitions to a self-sustaining inverse Compton scattering mode in which the particles accelerated are mainly protons with a small component of positrons. It is argued that this mode cannot be absolutely stable. The number density of any outward-moving pair plasma is small and electron and positron Lorentz factors too high to support growth of any collective mode capable of exciting normal pulsar coherent radio emission. Particle fluxes and the position at which they pass through the light cylinder are mode-dependent and in principle, transitions can be accompanied by changes in spin-down torque. The properties of the system are discussed in relation to observations of nulls, mode-changes, and the group of long-term intermittent pulsars.
Pulsars emit low-frequency radio waves through to high-energy gamma-rays that are generated anywhere from the surface out to the edges of the magnetosphere. Detecting correlated mode changes in the multi-wavelength emission is therefore key to understanding the physical relationship between these emission sites. Through simultaneous observations, we have detected synchronous switching in the radio and X-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio bright mode, the X-rays show only an un-pulsed, non-thermal component. Conversely, when the pulsar is in a radio quiet mode, the X-ray luminosity more than doubles and a 100%-pulsed thermal component is observed along with the non-thermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.
We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.
We present a global kinetic plasma simulation of an axisymmetric pulsar magnetosphere with self-consistent $e^pm$ pair production. We use the particle-in-cell method and log-spherical coordinates with a grid size $4096times 4096$. This allows us to achieve a high voltage induced by the pulsar rotation and investigate pair creation in a young pulsar far from the death line. We find the following. (1) The energy release and $e^pm$ creation are strongly concentrated in the thin, Y-shaped current sheet, with a peak localized in a small volume at the Y-point. (2) The Y-point is shifted inward from the light cylinder by $sim 15%$, and breathes with a small amplitude. (3) The dense $e^pm$ cloud at the Y-point is in ultra-relativistic rotation, which we call super-rotation, because it exceeds co-rotation with the star. The cloud receives angular momentum flowing from the star along the poloidal magnetic lines. (4) Gamma-ray emission peaks at the Y-point and is collimated in the azimuthal direction, tangent to the Y-point circle. (5) The separatrix current sheet between the closed magnetosphere and the open magnetic field lines is sustained by the electron backflow from the Y-point cloud. Its thickness is self-regulated to marginal charge starvation. (6) Only a small fraction of dissipation occurs in the separatrix inward of the Y-point. A much higher power is released in the equatorial plane, especially at the Y-point where the created dense $e^pm$ plasma is spun up and intermittently ejected through the nozzle between the two open magnetic fluxes.
Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here we report on a broad-band variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over 4 months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.
Contopoulos 2019 proposed that a dissipation zone develops in the magnetosphere of young pulsars at the edge of the closed-line region beyond the light cylinder. This is necessary in order to supply the charge carriers that will establish current closure through the equatorial and separatrix current-sheets. In the present work, we propose to investigate in greater detail this region with a simplified model that we would like to call the `ring-of-fire. According to this simple model, the dissipation zone is a narrow reconnection layer where electrons and positrons are accelerated inwards and outwards respectively along Speiser orbits that are deflected in the azimuthal direction by the pulsar rotation. After they exit the reconnection layer, the accelerated positrons form the positively charged equatorial current-sheet, and the accelerated electrons form the negatively charged separatrix current-sheet along the boundary of the closed-line region. During their acceleration, particles lose only a small part of their energy to radiation. Most of their energy is lost outside the dissipation region, in the equatorial and separatrix current sheets. Our simple model allows us to obtain high-energy spectra and efficiencies. The radiation emitted by the positrons in the equatorial current-sheet forms a very-high energy tail that extends up to the TeV range.