Do you want to publish a course? Click here

Deep Pepper: Expert Iteration based Chess agent in the Reinforcement Learning Setting

143   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

An almost-perfect chess playing agent has been a long standing challenge in the field of Artificial Intelligence. Some of the recent advances demonstrate we are approaching that goal. In this project, we provide methods for faster training of self-play style algorithms, mathematical details of the algorithm used, various potential future directions, and discuss most of the relevant work in the area of computer chess. Deep Pepper uses embedded knowledge to accelerate the training of the chess engine over a tabula rasa system such as Alpha Zero. We also release our code to promote further research.



rate research

Read More

Exploration is critical for good results in deep reinforcement learning and has attracted much attention. However, existing multi-agent deep reinforcement learning algorithms still use mostly noise-based techniques. Very recently, exploration methods that consider cooperation among multiple agents have been developed. However, existing methods suffer from a common challenge: agents struggle to identify states that are worth exploring, and hardly coordinate exploration efforts toward those states. To address this shortcoming, in this paper, we propose cooperative multi-agent exploration (CMAE): agents share a common goal while exploring. The goal is selected from multiple projected state spaces via a normalized entropy-based technique. Then, agents are trained to reach this goal in a coordinated manner. We demonstrate that CMAE consistently outperforms baselines on various tasks, including a sparse-reward version of the multiple-particle environment (MPE) and the Starcraft multi-agent challenge (SMAC).
The incorporation of macro-actions (temporally extended actions) into multi-agent decision problems has the potential to address the curse of dimensionality associated with such decision problems. Since macro-actions last for stochastic durations, multiple agents executing decentralized policies in cooperative environments must act asynchronously. We present an algorithm that modifies generalized advantage estimation for temporally extended actions, allowing a state-of-the-art policy optimization algorithm to optimize policies in Dec-POMDPs in which agents act asynchronously. We show that our algorithm is capable of learning optimal policies in two cooperative domains, one involving real-time bus holding control and one involving wildfire fighting with unmanned aircraft. Our algorithm works by framing problems as event-driven decision processes, which are scenarios in which the sequence and timing of actions and events are random and governed by an underlying stochastic process. In addition to optimizing policies with continuous state and action spaces, our algorithm also facilitates the use of event-driven simulators, which do not require time to be discretized into time-steps. We demonstrate the benefit of using event-driven simulation in the context of multiple agents taking asynchronous actions. We show that fixed time-step simulation risks obfuscating the sequence in which closely separated events occur, adversely affecting the policies learned. In addition, we show that arbitrarily shrinking the time-step scales poorly with the number of agents.
166 - Arjit Sharma , Sahil Sharma 2021
Urban autonomous driving is an open and challenging problem to solve as the decision-making system has to account for several dynamic factors like multi-agent interactions, diverse scene perceptions, complex road geometries, and other rarely occurring real-world events. On the other side, with deep reinforcement learning (DRL) techniques, agents have learned many complex policies. They have even achieved super-human-level performances in various Atari Games and Deepminds AlphaGo. However, current DRL techniques do not generalize well on complex urban driving scenarios. This paper introduces the DRL driven Watch and Drive (WAD) agent for end-to-end urban autonomous driving. Motivated by recent advancements, the study aims to detect important objects/states in high dimensional spaces of CARLA and extract the latent state from them. Further, passing on the latent state information to WAD agents based on TD3 and SAC methods to learn the optimal driving policy. Our novel approach utilizing fewer resources, step-by-step learning of different driving tasks, hard episode termination policy, and reward mechanism has led our agents to achieve a 100% success rate on all driving tasks in the original CARLA benchmark and set a new record of 82% on further complex NoCrash benchmark, outperforming the state-of-the-art model by more than +30% on NoCrash benchmark.
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for example, in Bridge, collusion in poker, and collusion in bidding. The possibility for the team members to communicate before gameplay---that is, coordinate their strategies ex ante---makes the use of behavioral strategies unsatisfactory. We introduce Soft Team Actor-Critic (STAC) as a solution to the teams coordination problem that does not require any prior domain knowledge. STAC allows team members to effectively exploit ex ante communication via exogenous signals that are shared among the team. STAC reaches near-optimal coordinated strategies both in perfectly observable and partially observable games, where previous deep RL algorithms fail to reach optimal coordinated behaviors.
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state, in order to plan and to generalize better out-of-distribution. The agents architecture uses a set representation and a bottleneck mechanism, forcing the number of entities to which the agent attends at each planning step to be small. In experiments with customized MiniGrid environments with different dynamics, we observe that the design allows agents to learn to plan effectively, by attending to the relevant objects, leading to better out-of-distribution generalization.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا