Do you want to publish a course? Click here

Mode-division (de)multiplexing using adiabatic passage and supersymmetric waveguides

107   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The development of mode-division multiplexing techniques is an important step to increase the information processing capacity. In this context, we design an efficient and robust mode-division (de)multiplexing integrated device based on the combination of spatial adiabatic passage and supersymmetric techniques. It consists of two identical step-index external waveguides coupled to a supersymmetric central one with a specific modal content that prevents the transfer of the fundamental transverse electric spatial mode. The separation between waveguides is engineered along the propagation direction to optimize spatial adiabatic passage for the first excited transverse electric spatial mode of the step-index waveguides. Thus, by injecting a superposition of the two lowest spatial modes into the step-index left waveguide, the fundamental mode remains in the left waveguide while the first excited mode is fully transmitted to the right waveguide. Output fidelities $mathcal{F}>0.90$ are obtained for a broad range of geometrical parameter values and lights wavelengths, reaching $mathcal{F}=0.99$ for optimized values.



rate research

Read More

We present a new approach to long range coupling based on a combination of adiabatic passage and lateral leakage in thin shallow ridge waveguides on a silicon photonic platform. The approach enables transport of light between two isolated waveguides through a mode of the silicon slab that acts as an optical bus. Due to the nature of the adiabatic protocol, the bus mode has minimal population and the transport is highly robust. We prove the concept and examine the robustness of this approach using rigorous modelling. We further demonstrate the utility of the approach by coupling power between two waveguides whilst bypassing an intermediate waveguide. This concept could form the basis of a new interconnect technology for silicon integrated photonic chips.
The orbital angular momentum (OAM) of photons presents a degree of freedom for enhancing the secure key rate of free-space quantum key distribution (QKD) through mode-division multiplexing (MDM). However, atmospheric turbulence can lead to substantial modal crosstalk, which is a long-standing challenge to MDM for free-space QKD. Here, we show that the digital generation of time-reversed wavefronts for multiple probe beams is an effective method for mitigating atmospheric turbulence. We experimentally characterize seven OAM modes after propagation through a 340-m outdoor free-space link and observe an average modal crosstalk as low as 13.2% by implementing real-time time reversal. The crosstalk can be further reduced to 3.4% when adopting a mode spacing $Delta ell$ of 2. We implement a classical MDM system as a proof-of-principle demonstration, and the bit error rate is reduced from $3.6times 10^{-3}$ to be less than $1.3times 10^{-7}$ through the use of time reversal. We also propose a practical and scalable scheme for high-speed, mode-multiplexed QKD through a turbulent link. The modal crosstalk can be further reduced by using faster equipment. Our method can be useful to various free-space applications that require crosstalk suppression.
215 - Xinru Wu , Chaoran Huang , Ke Xu 2017
Optical interconnect is a potential solution to attain the large bandwidth on-chip communications needed in high performance computers in a low power and low cost manner. Mode-division multiplexing (MDM) is an emerging technology that scales the capacity of a single wavelength carrier by the number of modes in a multimode waveguide, and is attractive as a cost-effective means for high bandwidth density on-chip communications. Advanced modulation formats with high spectral efficiency in MDM networks can further improve the data rates of the optical link. Here, we demonstrate an intra-chip MDM communications link employing advanced modulation formats with two waveguide modes. We demonstrate a compact single wavelength carrier link that is expected to support 2x100 Gb/s mode multiplexed capacity. The network comprised integrated microring modulators at the transmitter, mode multiplexers, multimode waveguide interconnect, mode demultiplexers and integrated germanium on silicon photodetectors. Each of the mode channels achieves 100 Gb/s line rate with 84 Gb/s net payload data rate at 7% overhead for hard-decision forward error correction (HD-FEC) in the OFDM/16-QAM signal transmission.
59 - G. Queralto , V. Ahufinger , 2018
We introduce continuous supersymmetric transformations to manipulate the modal content in systems of optical waveguides, providing a systematic method to design efficient and robust integrated devices such as tapered waveguides, single-waveguide mode filters, beam splitters and interferometers. These transformations connect superpartner profiles by smoothly modifying the transverse index profile along the propagation direction and, if the modification is performed adiabatically, the transverse electric modes evolve adapting their shape and propagation constant without being coupled to other guided or radiated modes. Numerical simulations show that very high fidelities are obtained for a broad range of devices lengths and lights wavelengths.
Using a femtosecond laser writing technique, we fabricate and characterise three-waveguide digital adiabatic passage devices, with the central waveguide digitised into five discrete waveguidelets. Strongly asymmetric behaviour was observed, devices operated with high fidelity in the counter-intuitive scheme while strongly suppressing transmission in the intuitive. The low differential loss of the digital adiabatic passage designs potentially offers additional functionality for adiabatic passage based devices. These devices operate with a high contrast ($>!90%$) over a 60nm bandwidth, centered at $sim 823$nm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا