No Arabic abstract
In this paper, we analyze a proposed gravity dual to a $SU(N)$ Bose-Hubbard model, as well as construct a holographic dual of a $SU(N)$ Fermi-Hubbard model from D-branes in string theory. In both cases, the $SU(N)$ is dynamical, i.e. the hopping degrees of freedom are strongly coupled to $SU(N)$ gauge bosons which themselves are strongly interacting. The vacuum expectation value (VEV) of the hopping term (i.e. the hopping energy) is analyzed in the gravity dual as a function of the bulk mass of the field dual to the hopping term, as well as of the coupling constants of the model. The bulk mass controls the anomalous dimension (i.e. the critical exponent) of the hopping term in the $SU(N)$ Bose-Hubbard model. We compare the hopping energy to the corresponding result in a numerical simulation of the ungauged $SU(N)$ Bose-Hubbard model. We find agreement when the hopping parameter is smaller than the other couplings. Our analysis shows that the kinetic energy increases as the bulk mass increases, due to increased contributions from the IR. The holographic Bose-Hubbard model is then compared with the string theory construction of a $SU(N)$ Fermi-Hubbard model. The string theory construction makes it possible to describe fluctuations around a half-filled state in the supergravity limit, which map to ${cal O}(1)$ occupation number fluctuations in the Fermi-Hubbard model at half filling. Finally, the VEV of the Bose-Hubbard model is shown to agree with the one of the fermionic Hubbard model with the help of a two-site version of the Jordan-Wigner transformation.
We use holography to study the ground state of a system with interacting bosonic and fermionic degrees of freedom at finite density. The gravitational model consists of Einstein-Maxwell gravity coupled to a perfect fluid of charged fermions and to a charged scalar field which interact through a current-current interaction. When the scalar field is non-trivial, in addition to compact electron stars, the screening of the fermion electric charge by the scalar condensate allows the formation of solutions where the fermion fluid is made of antiparticles, as well as solutions with coexisting, separated regions of particle-like and antiparticle-like fermion fluids. We show that, when the latter solutions exist, they are thermodynamically favored. By computing the two-point Green function of the boundary fermionic operator we show that, in addition to the charged scalar condensate, the dual field theory state exhibits electron-like and/or hole-like Fermi surfaces. Compared to fluid-only solutions, the presence of the scalar condensate destroys the Fermi surfaces with lowest Fermi momenta. We interpret this as a signal of the onset of superconductivity.
We study the Bose and Fermi Hubbard model in the (formal) limit of large coordination numbers $Zgg1$. Via an expansion into powers of $1/Z$, we establish a hierarchy of correlations which facilitates an approximate analytical derivation of the time-evolution of the reduced density matrices for one and two sites etc. With this method, we study the quantum dynamics (starting in the ground state) after a quantum quench, i.e., after suddenly switching the tunneling rate $J$ from zero to a finite value, which is still in the Mott regime. We find that the reduced density matrices approach a (quasi) equilibrium state after some time. For one lattice site, this state can be described by a thermal state (within the accuracy of our approximation). However, the (quasi) equilibrium state of the reduced density matrices for two sites including the correlations cannot be described by a thermal state. Thus, real thermalization (if it occurs) should take much longer time. This behavior has already been observed in other scenarios and is sometimes called ``pre-thermalization. Finally, we compare our results to numerical simulations for finite lattices in one and two dimensions and find qualitative agreement.
We study the fermionic spectral density in a strongly correlated quantum system described by a gravity dual. In the presence of periodically modulated chemical potential, which models the effect of the ionic lattice, we explore the shapes of the corresponding Fermi surfaces, defined by the location of peaks in the spectral density at the Fermi level. We find that at strong lattice potentials sectors of the Fermi surface are unexpectedly destroyed and the Fermi surface becomes an arc-like disconnected manifold. We explain this phenomenon in terms of a collision of the Fermi surface pole with zeros of the fermionic Greens function, which are explicitly computable in the holographic dual.
We construct a semi-holographic effective theory in which the electron of a two-dimensional band hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other bands that preserve quasiparticle characteristics. Besides the scaling dimension $ u$ of the fermionic operator in the holographic sector, the effective theory has two {dimensionless} couplings $alpha$ and $gamma$ determining the holographic and Fermi-liquid-type contributions to the self-energy respectively. We find that irrespective of the choice of the holographic critical sector, there exists a ratio of the effective couplings for which we obtain linear-in-T resistivity for a wide range of temperatures. This scaling persists to arbitrarily low temperatures when $ u$ approaches unity in which limit we obtain a marginal Fermi liquid with a specific temperature dependence of the self-energy.
We investigate the effects of an extended Bose-Hubbard model with a long range hopping term on the Mott insulator-superfluid quantum phase transition. We consider the effects of a power law decaying hopping term and show that the Mott phase is shrinked in the parameters space. We provide an exact solution for one dimensional lattices and then two approximations for higher dimensions, each one valid in a specific range of the power law exponent: a continuum approximation and a discrete one. Finally, we extend these results to a more realistic situation, where the long range hopping term is made by a power law factor and a screening exponential term and study the main effects on the Mott lobes.