The mechanism for the early-phase blue and excessive emission within the first few days, reported so far for a few type Ia supernovae (SNe Ia), has been suggested to be interaction of the SN ejecta either with a non-degenerate companion star or circumstellar media (CSM). Recently, another mechanism has been suggested within the context of the He detonation-triggered SN scenario (i.e., double detonation scenario or He-ignited violent merger), in which the radioactive isotopes in the outermost layer of the SN ejecta produce the early emission. In this paper, we investigate properties of the early-phase excessive emission predicted by these different scenarios. The He detonation scenario shows different behaviors in the early flash than the companion/CSM interaction scenarios. Especially clear diagnostics is provided once the behaviors in the UV and in the optical are combined. The spectra synthesized for the He detonation scenario are characterized by the absorptions due to the He detonation products, which especially develop in the decay phase. We further expect a relation between the properties of the early-phase flash and those of the maximum SN emission, in a way the brighter and slower initial flash is accompanied by a more substantial effect of the additional absorptions (and reddening). This relation, however, should be considered together with the maximum luminosity of the SN, since the larger luminosity suppresses the effect of the additional absorption. With these expected features, we address the possible origins of the observed excessive early-phase emission for a few SNe.