Do you want to publish a course? Click here

Tiling and Stitching Segmentation Output for Remote Sensing: Basic Challenges and Recommendations

217   0   0.0 ( 0 )
 Added by Bohao Huang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this work we consider the application of convolutional neural networks (CNNs) for pixel-wise labeling (a.k.a., semantic segmentation) of remote sensing imagery (e.g., aerial color or hyperspectral imagery). Remote sensing imagery is usually stored in the form of very large images, referred to as tiles, which are too large to be segmented directly using most CNNs and their associated hardware. As a result, during label inference, smaller sub-images, called patches, are processed individually and then stitched (concatenated) back together to create a tile-sized label map. This approach suffers from computational ineffiency and can result in discontinuities at output boundaries. We propose a simple alternative approach in which the input size of the CNN is dramatically increased only during label inference. This does not avoid stitching altogether, but substantially mitigates its limitations. We evaluate the performance of the proposed approach against a vonventional stitching approach using two popular segmentation CNN models and two large-scale remote sensing imagery datasets. The results suggest that the proposed approach substantially reduces label inference time, while also yielding modest overall label accuracy increases. This approach contributed to our wining entry (overall performance) in the INRIA building labeling competition.



rate research

Read More

OpenStreetMap (OSM) is a community-based, freely available, editable map service that was created as an alternative to authoritative ones. Given that it is edited mainly by volunteers with different mapping skills, the completeness and quality of its annotations are heterogeneous across different geographical locations. Despite that, OSM has been widely used in several applications in {Geosciences}, Earth Observation and environmental sciences. In this work, we present a review of recent methods based on machine learning to improve and use OSM data. Such methods aim either 1) at improving the coverage and quality of OSM layers, typically using GIS and remote sensing technologies, or 2) at using the existing OSM layers to train models based on image data to serve applications like navigation or {land use} classification. We believe that OSM (as well as other sources of open land maps) can change the way we interpret remote sensing data and that the synergy with machine learning can scale participatory map making and its quality to the level needed to serve global and up-to-date land mapping.
In this paper, we focus on the challenging multicategory instance segmentation problem in remote sensing images (RSIs), which aims at predicting the categories of all instances and localizing them with pixel-level masks. Although many landmark frameworks have demonstrated promising performance in instance segmentation, the complexity in the background and scale variability instances still remain challenging for instance segmentation of RSIs. To address the above problems, we propose an end-to-end multi-category instance segmentation model, namely Semantic Attention and Scale Complementary Network, which mainly consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB). The SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map and reduce the background noises interference. To handle the under-segmentation of geospatial instances with large varying scales, we design the SCMB that extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales to sufficiently leverage the multi-scale information. We conduct comprehensive experiments to evaluate the effectiveness of our proposed method on the iSAID dataset and the NWPU Instance Segmentation dataset and achieve promising performance.
Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might have to be involved for guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotators are asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the FEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learning signal that accounts for neighbourhood structures both in spatial and feature terms.
104 - Haifeng Li , Kaijian Qiu , Li Chen 2019
High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.
270 - A Hamida , A. Beno^it 2017
With the rapid development of Remote Sensing acquisition techniques, there is a need to scale and improve processing tools to cope with the observed increase of both data volume and richness. Among popular techniques in remote sensing, Deep Learning gains increasing interest but depends on the quality of the training data. Therefore, this paper presents recent Deep Learning approaches for fine or coarse land cover semantic segmentation estimation. Various 2D architectures are tested and a new 3D model is introduced in order to jointly process the spatial and spectral dimensions of the data. Such a set of networks enables the comparison of the different spectral fusion schemes. Besides, we also assess the use of a noisy ground truth (i.e. outdated and low spatial resolution labels) for training and testing the networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا