Do you want to publish a course? Click here

The Kepler Follow-Up Observation Program. II. Stellar Parameters from Medium- and High-Resolution Spectroscopy

103   0   0.0 ( 0 )
 Added by Elise Furlan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from spectroscopic follow-up observations of stars identified in the Kepler field and carried out by teams of the Kepler Follow-Up Observation Program. Two samples of stars were observed over six years (2009-2015): 614 standard stars (divided into platinum and gold categories) selected based on their asteroseismic detections and 2667 host stars of Kepler Objects of Interest (KOIs), most of them planet candidates. Four data analysis pipelines were used to derive stellar parameters for the observed stars. We compare the $T_{mathrm{eff}}$, $log$(g), and [Fe/H] values derived for the same stars by different pipelines; from the average of the standard deviations of the differences in these parameter values, we derive error floors of $sim$ 100 K, 0.2 dex, and 0.1 dex for $T_{mathrm{eff}}$, $log$(g), and [Fe/H], respectively. Noticeable disagreements are seen mostly at the largest and smallest parameter values (e.g., in the giant star regime). Most of the $log$(g) values derived from spectra for the platinum stars agree on average within 0.025 dex (but with a spread of 0.1-0.2 dex) with the asteroseismic $log$(g) values. Compared to the Kepler Input Catalog (KIC), the spectroscopically derived stellar parameters agree within the uncertainties of the KIC, but are more precise and are thus an important contribution towards deriving more reliable planetary radii.



rate research

Read More

We present results from high-resolution, optical to near-IR imaging of host stars of Kepler Objects of Interest (KOIs), identified in the original Kepler field. Part of the data were obtained under the Kepler imaging follow-up observation program over seven years (2009 - 2015). Almost 90% of stars that are hosts to planet candidates or confirmed planets were observed. We combine measurements of companions to KOI host stars from different bands to create a comprehensive catalog of projected separations, position angles, and magnitude differences for all detected companion stars (some of which may not be bound). Our compilation includes 2297 companions around 1903 primary stars. From high-resolution imaging, we find that ~10% (~30%) of the observed stars have at least one companion detected within 1 (4). The true fraction of systems with close (< ~4) companions is larger than the observed one due to the limited sensitivities of the imaging data. We derive correction factors for planet radii caused by the dilution of the transit depth: assuming that planets orbit the primary stars or the brightest companion stars, the average correction factors are 1.06 and 3.09, respectively. The true effect of transit dilution lies in between these two cases and varies with each system. Applying these factors to planet radii decreases the number of KOI planets with radii smaller than 2 R_Earth by ~2-23% and thus affects planet occurrence rates. This effect will also be important for the yield of small planets from future transit missions such as TESS.
236 - R. Farmer , U. Kolb , A.J. Norton 2013
Using population synthesis tools we create a synthetic Kepler Input Catalogue (KIC) and subject it to the Kepler Stellar Classification Program (SCP) method for determining stellar parameters such as the effective temperature Teff and surface gravity g. We achieve a satisfactory match between the synthetic KIC and the real KIC in the log g vs log Teff diagram, while there is a significant difference between the actual physical stellar parameters and those derived by the SCP of the stars in the synthetic sample. We find a median difference Delta Teff=+500K and Delta log g =-0.2dex for main-sequence stars, and Delta Teff=+50K and Delta log g =-0.5dex for giants, although there is a large variation across parameter space. For a MS star the median difference in g would equate to a ~3% increase in stellar radius and a consequent ~3% overestimate of the radius for any transiting exoplanet. We find no significant difference between Delta Teff and Delta log g for single stars and the primary star in a binary system. We also re-created the Kepler target selection method and found that the binary fraction is unchanged by the target selection. Binaries are selected in similar proportions to single star systems; the fraction of MS dwarfs in the sample increases from about 75% to 80%, and the giant star fraction decreases from 25% to 20%.
The occurrence rate of hot Jupiters from the Kepler transit survey is roughly half that of radial velocity surveys targeting solar neighborhood stars. One hypothesis to explain this difference is that the two surveys target stars with different stellar metallicity distributions. To test this hypothesis, we measure the metallicity distribution of the Kepler targets using the Hectochelle multi-fiber, high-resolution spectrograph. Limiting our spectroscopic analysis to 610 dwarf stars in our sample with log(g)>3.5, we measure a metallicity distribution characterized by a mean of [M/H]_{mean} = -0.045 +/- 0.00, in agreement with previous studies of the Kepler field target stars. In comparison, the metallicity distribution of the California Planet Search radial velocity sample has a mean of [M/H]_{CPS, mean} = -0.005 +/- 0.006, and the samples come from different parent populations according to a Kolmogorov-Smirnov test. We refit the exponential relation between the fraction of stars hosting a close-in giant planet and the host star metallicity using a sample of dwarf stars from the California Planet Search with updated metallicities. The best-fit relation tells us that the difference in metallicity between the two samples is insufficient to explain the discrepant Hot Jupiter occurrence rates; the metallicity difference would need to be $simeq$0.2-0.3 dex for perfect agreement. We also show that (sub)giant contamination in the Kepler sample cannot reconcile the two occurrence calculations. We conclude that other factors, such as binary contamination and imperfect stellar properties, must also be at play.
Constraining the spatial and thermal structure of the gaseous component of circumstellar disks is crucial to understand star and planet formation. Models predict that the [Ne II] line at 12.81 {mu}m detected in young stellar objects with Spitzer traces disk gas and its response to high energy radiation, but such [Ne II] emission may also originate in shocks within powerful outflows. To distinguish between these potential origins for mid-infrared [Ne II] emission and to constrain disk models, we observed 32 young stellar objects using the high resolution (R~30000) mid-infrared spectrograph VISIR at the VLT. We detected the 12.81 {mu}m [Ne II] line in 12 objects, tripling the number of detections of this line in young stellar objects with high spatial and spectral resolution spectrographs. We obtain the following main results: a) In Class I objects the [Ne II] emission observed from Spitzer is mainly due to gas at a distance of more than 20-40 AU from the star, where neon is, most likely, ionized by shocks due to protostellar outflows. b) In transition and pre-transition disks, most of the emission is confined to the inner disk, within 20-40 AU from the central star. c) Detailed analysis of line profiles indicates that, in transition and pre-transition disks, the line is slightly blue-shifted (2-12 km s{^-1}) with respect to the stellar velocity, and the line width is directly correlated with the disk inclination, as expected if the emission is due to a disk wind. d) Models of EUV/X-ray irradiated disks reproduce well the observed relation between the line width and the disk inclination, but underestimate the blue-shift of the line.
The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا