This paper studies the problem of secure communcation over the two-receiver discrete memoryless broadcast channel with one-sided receiver side information and with a passive eavesdropper. We proposed a coding scheme which is based upon the superposition-Marton framework. Secrecy techniques such as the one-time pad, Carleial-Hellman secrecy coding and Wyner serecy coding are applied to ensure individual secrecy. This scheme is shown to be capacity achieving for some cases of the degraded broadcast channel. We also notice that one-sided receiver side information provides the advantage of rate region improvement, in particular when it is available at the weaker legitimate receiver.
This paper investigates the capacity region of the three-receiver AWGN broadcast channel where the receivers (i) have private-message requests and (ii) may know some of the messages requested by other receivers as side information. We first classify all 64 possible side information configurations into eight groups, each consisting of eight members. We next construct transmission schemes, and derive new inner and outer bounds for the groups. This establishes the capacity region for 52 out of 64 possible side information configurations. For six groups (i.e., groups 1, 2, 3, 5, 6, and 8 in our terminology), we establish the capacity region for all their members, and show that it tightens both the best known inner and outer bounds. For group 4, our inner and outer bounds tighten the best known inner bound and/or outer bound for all the group members. Moreover, our bounds coincide at certain regions, which can be characterized by two thresholds. For group 7, our inner and outer bounds coincide for four members, thereby establishing the capacity region. For the remaining four members, our bounds tighten both the best known inner and outer bounds.
This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We first propose a transmission scheme and derive an inner bound for the two-receiver memoryless broadcast channel. We next prove that this inner bound is tight for the deterministic channel and the more capable channel, thereby establishing their capacity regions. We show that this inner bound is also tight for all classes of two-receiver broadcast channels whose capacity regions were known prior to this work. Our proposed scheme is consequently a unified capacity-achieving scheme for these classes of broadcast channels.
We consider the two-receiver memoryless broadcast channel with states where each receiver requests both common and private messages, and may know part of the private message requested by the other receiver as receiver message side information (RMSI). We address two categories of the channel (i) channel with states known causally to the transmitter, and (ii) channel with states known non-causally to the transmitter. Starting with the channel without RMSI, we first propose a transmission scheme and derive an inner bound for the causal category. We then unify our inner bound for the causal category and the best-known inner bound for the non-causal category, although their transmission schemes are different. Moving on to the channel with RMSI, we first apply a pre-coding to the transmission schemes of the causal and non-causal categories without RMSI. We then derive a unified inner bound as a result of having a unified inner bound when there is no RMSI, and applying the same pre-coding to both categories. We show that our inner bound is tight for some new cases as well as the cases whose capacity region was known previously.
The secrecy capacity region for the K-receiver degraded broadcast channel (BC) is given for confidential messages sent to the receivers and to be kept secret from an external wiretapper. Superposition coding and Wyners random code partitioning are used to show the achievable rate tuples. Error probability analysis and equivocation calculation are also provided. In the converse proof, a new definition for the auxiliary random variables is used, which is different from either the case of the 2-receiver BC without common message or the K-receiver BC with common message, both with an external wiretapper; or the K-receiver BC without a wiretapper.
This paper simplifies an existing coding scheme for the two-receiver discrete memoryless broadcast channel with complementary receiver side information where there is a passive eavesdropper and individual secrecy is required. The existing coding scheme is simplified in two steps by replacing Wyner secrecy coding with Carleial-Hellman secrecy coding. The resulting simplified scheme is free from redundant message splits and random components. Not least, the simplified scheme retains the existing achievable individual secrecy rate region. Finally, its construction simplicity helps us gain additional insight on the integration of secrecy techniques into error-correcting coding schemes.
Jin Yeong Tan
,Lawrence Ong
,Behzad Asadi
.
(2018)
.
"The Secure Two-Receiver Broadcast Channel With One-Sided Receiver Side Information"
.
Jin Yeong Tan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا