Surface Light Field Compression using a Point Cloud Codec


Abstract in English

Light field (LF) representations aim to provide photo-realistic, free-viewpoint viewing experiences. However, the most popular LF representations are images from multiple views. Multi-view image-based representations generally need to restrict the range or degrees of freedom of the viewing experience to what can be interpolated in the image domain, essentially because they lack explicit geometry information. We present a new surface light field (SLF) representation based on explicit geometry, and a method for SLF compression. First, we map the multi-view images of a scene onto a 3D geometric point cloud. The color of each point in the point cloud is a function of viewing direction known as a view map. We represent each view map efficiently in a B-Spline wavelet basis. This representation is capable of modeling diverse surface materials and complex lighting conditions in a highly scalable and adaptive manner. The coefficients of the B-Spline wavelet representation are then compressed spatially. To increase the spatial correlation and thus improve compression efficiency, we introduce a smoothing term to make the coefficients more similar across the 3D space. We compress the coefficients spatially using existing point cloud compression (PCC) methods. On the decoder side, the scene is rendered efficiently from any viewing direction by reconstructing the view map at each point. In contrast to multi-view image-based LF approaches, our method supports photo-realistic rendering of real-world scenes from arbitrary viewpoints, i.e., with an unlimited six degrees of freedom (6DOF). In terms of rate and distortion, experimental results show that our method achieves superior performance with lighter decoder complexity compared with a reference image-plus-geometry compression (IGC) scheme, indicating its potential in practical virtual and augmented reality applications.

Download