Atomically resolved probe-type scanning tunneling microscope for use in harsh vibrational cryogen-free superconducting magnet


Abstract in English

We present a probe-type scanning tunneling microscope (STM) with atomic resolution that is designed to be directly inserted and work in a harsh vibrational cryogen-free superconducting magnet system. When a commercial variable temperature insert (VTI) is installed in the magnet and the STM is in turn housed in the VTI, a lowest temperature of 1.6 K can be achieved, where the STM still operates well. We have tested it in an 8 T superconducting magnet cooled with the pulse-tube cryocooler (PTC) and obtained atomically revolved graphite and NiSe2 images as well as the scanning tunneling spectrum (STS, i.e. dI/dV spectrum) data of the latter near its critical temperature, which show the formation process of the superconducting gap as a function of temperature. The drifting rates of the STM at 1.6 K in X-Y plane and Z direction are 1.15 and 1.71 pm/min respectively. Noise analysis for the tunneling current shows that the amplitudes of the dominant peaks (6.84 and 10.25Hz) are low. This is important as a cryogen-free magnet system has long been considered too harsh for any atomic resolution measurement.

Download