Do you want to publish a course? Click here

The K2 M67 Study: Establishing the Limits of Stellar Rotation Period Measurements in M67 with K2 Campaign 5 Data

220   0   0.0 ( 0 )
 Added by Rebecca Esselstein
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The open cluster M67 offers the unique opportunity to measure rotation periods for solar-age stars across a range of masses, potentially filling a critical gap in the understanding of angular momentum loss in older main sequence stars. The observation of M67 by NASA K2 Campaign 5 provided light curves with high enough precision to make this task possible, albeit challenging, as the pointing instability, 75d observation window, crowded field, and typically low-amplitude signals mean determining accurate rotation periods on the order of 25 - 30d is inherently difficult. Lingering, non-astrophysical signals with power at >25d found in a set of Campaign 5 A and F stars compounds the problem. To achieve a quantitative understanding of the best-case scenario limits for reliable period detection imposed by these inconveniences, we embarked on a comprehensive set of injection tests, injecting 120,000 sinusoidal signals with periods ranging from 5 to 35d and amplitudes from 0.05% to 3.0% into real Campaign 5 M67 light curves processed using two different pipelines. We attempted to recover the signals using a normalized version of the Lomb-Scargle periodogram and setting a detection threshold. We find that while the reliability of detected periods is high, the completeness (sensitivity) drops rapidly with increasing period and decreasing amplitude, maxing at 15% recovery rate for the solar case (i.e. 25d period, 0.1% amplitude). This study highlights the need for caution in determining M67 rotation periods from Campaign 5 data, but this can be extended to other clusters observed by K2 and, soon, TESS.



rate research

Read More

Yellow straggler stars (YSSs) fall above the subgiant branch in optical color-magnitude diagrams, between the blue stragglers and the red giants. YSSs may represent a population of evolved blue stragglers, but none have the direct and precise mass and radius measurements needed to determine their evolutionary states and formation histories. Here we report the first asteroseismic mass and radius measurements of such a star, the yellow straggler S1237 in the open cluster M67. We apply asteroseismic scaling relations to a frequency analysis of the Kepler K2 light curve and find a mass of 2.9 $pm$ 0.2 M$_{odot}$ and a radius of 9.2 $pm$ 0.2 R$_{odot}$. This is more than twice the mass of the main- sequence turnoff in M67, suggesting S1237 is indeed an evolved blue straggler. S1237 is the primary in a spectroscopic binary. We update the binary orbital solution and use spectral energy distribution (SED) fitting to constrain the color-magnitude diagram (CMD) location of the secondary star. We find that the secondary is likely an upper main-sequence star near the turnoff, but a slightly hotter blue straggler companion is also possible. We then compare the asteroseismic mass of the primary to its mass from CMD fitting, finding the photometry implies a mass and radius more than 2$sigma$ below the asteroseismic measurement. Finally, we consider formation mechanisms for this star and suggest that S1237 may have formed from dynamical encounters resulting in stellar collisions or a binary merger.
Observations of stellar clusters have had a tremendous impact in forming our understanding of stellar evolution. The open cluster M67 has a particularly important role as a calibration benchmark for stellar evolution theory due to its near solar composition and age. As a result, it has been observed extensively, including attempts to detect solar-like oscillations in its main sequence and red giant stars. However, any asteroseismic inference has so far remained elusive due to the difficulty in measuring these extremely low amplitude oscillations. Here we report the first unambiguous detection of solar-like oscillations in the red giants of M67. We use data from the Kepler ecliptic mission, K2, to measure the global asteroseismic properties. We find a model-independent seismic-informed distance of 816+/-11pc, or (m-M)o=9.57+/-0.03mag, an average red-giant mass of 1.36+/-0.01Msun, in agreement with the dynamical mass from an eclipsing binary near the cluster turn-off, and ages of individual stars compatible with isochrone fitting. We see no evidence of strong mass loss on the red giant branch. We also determine seismic log g of all the cluster giants with a typical precision of ~0.01dex. Our results generally show good agreement with independent methods and support the use of seismic scaling relations to determine global properties of red giant stars with near solar metallicity. We further illustrate that the data are of such high quality, that future work on individual mode frequencies should be possible, which would extend the scope of seismic analysis of this cluster.
We present a study of the bright detached eclipsing main sequence binary WOCS 11028 (Sanders 617) in the open cluster M67. Although the binary has only one eclipse per orbital cycle, we show that the masses of the stars can be derived very precisely thanks to a strong constraint on the orbital inclination: $M_A = 1.222pm0.006 M_odot$ and $M_B = 0.909pm0.004 M_odot$. We use a spectral energy distribution fitting method to derive characteristics of the component stars in lieu of the precise radii that would normally be derived from a doubly-eclipsing binary. The deconvolution of the SEDs reveals that the brighter component of the binary is at the faint turnoff point for the cluster -- a distinct evolutionary point that occurs after the convective core has been established and while the star is in the middle of its movement toward lower surface temperature, before the so-called hook at the end of main sequence. The measurements are in distinct disagreement with evolution models at solar metallicity: higher metal abundances are needed to reproduce the characteristics of WOCS 11028 A. We discuss the changes to model physics that are likely to be needed to address the discrepancies. The clearest conclusions are that diffusion is probably necessary to reconcile spectroscopic abundances of M67 stars with the need for higher metallicity models, and that reduced strength convective overshooting is occurring for stars at the turnoff. At super-solar bulk metallicity, various indicators agree on a cluster age between about 3.5 and 4.0 Gyr.
At an age of 4 Gyr, typical solar-type stars in M67 have rotation rates of 20-30 days. Using K2 Campaign 5 and 16 light curves and the spectral archive of the WIYN Open Cluster Study, we identify eleven three-dimensional kinematic members of M67 with anomalously fast rotation periods of 2-8 days, implying ages of less than 1 Gyr. We hypothesize that these anomalously fast rotators have been spun up by mass transfer, mergers, or stellar collisions during dynamical encounters within the last Gyr, and thus represent lower-luminosity counterparts to the blue straggler stars. These 11 candidate post-interaction stellar systems have much in common with the blue stragglers including a high binary fraction (73%), a number of long-period, low-eccentricity binary systems, and in at least one case a UV excess consistent with the presence of a hot white dwarf companion. The identification of these 11 systems provides the first picture of the low-luminosity end of the blue straggler distribution, providing new constraints for detailed binary evolution models and cluster population studies. This result also clearly demonstrates the need to properly account for the impact of binaries on stellar evolution, as significant numbers of post-interaction binaries likely exist on cluster main sequences and in the field. These stars are not always easy to identify, but make up ~10% of the spectroscopic binary population among the solar-type stars in M67.
We present an analysis of a slightly eccentric ($e=0.05$), partially eclipsing long-period ($P = 69.73$ d) main sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry along with a large set of new and reanalyzed spectra, we derived highly precise masses ($1.111pm0.015$ and $0.748pm0.005 M_odot$) and radii ($1.071pm0.008pm0.003$ and $0.713pm0.019pm0.026 R_odot$, with statistical and systematic error estimates) for the stars. The radius of the secondary star is in agreement with theory. The primary, however, is approximately $15%$ smaller than reasonable isochrones for the cluster predict. Our best explanation is that the primary star was produced from the merger of two stars, as this can also account for the non-detection of photospheric lithium and its higher temperature relative to other cluster main sequence stars at the same $V$ magnitude. To understand the dynamical characteristics (low measured rotational line broadening of the primary star and the low eccentricity of the current binary orbit), we believe that the most probable (but not the only) explanation is the tidal evolution of a close binary within a primordial triple system (possibly after a period of Kozai-Lidov oscillations), leading to merger approximately 1Gyr ago. This star appears to be a future blue straggler that is being revealed as the cluster ages and the most massive main sequence stars die out.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا