Asymptotic safety and field parametrization dependence in the f(R) truncation


Abstract in English

We study the dependence on field parametrization of the functional renormalization group equation in the $f(R)$ truncation for the effective average action. We perform a systematic analysis of the dependence of fixed points and critical exponents in polynomial truncations. We find that, beyond the Einstein-Hilbert truncation, results are qualitatively different depending on the choice of parametrization. In particular, we observe that there are two different classes of fixed points, one with three relevant directions and the other with two. The computations are performed in the background approximation. We compare our results with the available literature and analyze how different schemes in the regularizations can affect the fixed point structure.

Download