Do you want to publish a course? Click here

Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary

122   0   0.0 ( 0 )
 Added by Robert Main
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio pulsars scintillate because their emission travels through the ionized interstellar medium via multiple paths, which interfere with each other. It has long been realized that the scattering screens responsible for the scintillation could be used as `interstellar lenses to localize pulsar emission regions. Most scattering screens, however, only marginally resolve emission components, limiting results to statistical inferences and detections of small positional shifts. Since screens situated close to the source have better resolution, it should be easier to resolve emission regions of pulsars located in high density environments such as supernova remnants or binaries in which the pulsars companion has an ionized outflow. Here, we report events of extreme plasma lensing in the `Black Widow pulsar, PSR~B1957+20, near the phase in its 9.2 hour orbit in which its emission is eclipsed by its companions outflow. During the lensing events, the flux is enhanced by factors of up to 70--80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and infer a resolution of our lenses comparable to the pulsars radius, about 10,km. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses.



rate research

Read More

In regions with strongly varying electron density, radio emission can be magnified significantly by plasma lensing. In the presence of magnetic fields, magnification in time and frequency will be different for two circular polarizations. We show how these effects can be used to measure or constrain the magnetic field parallel to the line of sight, $B_parallel$, as well as its spatial structure, $sigma_{B_parallel}$, in the lensing region. In addition, we discuss how generalized Faraday rotation can constrain the strength of the perpendicular field, $B_perp$. We attempt to make such measurements for the Black Widow pulsar, PSR~B1957+20, in which plasma lensing was recently discovered. For this system, pressure equilibrium suggests $Bgtrsim 20,$G at the interface between the pulsar and companion winds, where the radio eclipse starts and ends, and where most lensing occurs. We find no evidence for large-scale magnetic fields, with, on average, $B_parallel=0.02pm0.09,$G over the egress lensing region. From individual lensing events, we strongly constrain small scale magnetic structure to $sigma_B<10,$mG, thus excluding scenarios with a strong but rapidly varying field. Finally, from the lack of reduction of average circular polarization in the same region, we rule out a strong, quasi-transverse field. We cannot identify any plausible scenario in which a large magnetic field in this system is concealed, leaving the nature of the interface between the pulsar and companion winds an enigma. Our method can be applied to other sources showing plasma lensing, including other eclipsing pulsars and fast radio bursts, to study the local properties of the magnetic field.
We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of ~517.9 Hz and is in a binary system with an orbital period of 8.8 hrs and a projected semi-major axis of ~1.90 lt-s. Assuming a neutron star between 0.8 and 2.2 M_o and using the mass function of the system and the eclipse half-angle, we constrain the mass of the companion and the inclination of the system to be in the ~0.46-0.81 M_o and $sim74.4^o-77.3^o range, respectively. To date, this is the tightest constraint on the orbital inclination of any AMXP. As in other AMXPs, the pulse profile shows harmonic content up to the 3rd overtone. However, this is the first AMXP to show a 1st overtone with rms amplitudes between ~6% and ~23%, which is the strongest ever seen, and which can be more than two times stronger than the fundamental. The fact that SWIFT J1749.4-2807 is an eclipsing system which shows uncommonly strong harmonic content suggests that it might be the best source to date to set constraints on neutron star properties including compactness and geometry.
We report the discovery of the first radio pulsar associated with NGC 6712, an eclipsing black widow (BW) pulsar, J1853$-$0842A, found by high-sensitivity searches using the Five-hundred-meter Aperture Spherical radio Telescope. This 2.15 ms pulsar is in a 3.56 hr compact circular orbit with a very low mass companion likely of mass 0.018 to 0.036 $M_{rm odot}$ and exhibits eclipsing of the pulsar signal. Though the distance to PSR J1853$-$0842A predicted from its dispersion measure ($155.125 pm 0.004$ cm$^{-3}$ pc) and Galactic free electron density models are about 30% smaller than that of NGC 6712 obtained from interstellar reddening measurements, this is likely due to limited knowledge about the spiral arms and Scutum stellar cloud in this direction. Follow-up timing observations spanning 445 days allow us to localize the pulsars position to be 0.14 core radii from the center of NGC 6712 and measure a negative spin-down rate for this pulsar of $-2.39(2)times10^{-21}rm s s^{-1}$. The latter cannot be explained without the acceleration of the GC and decisively supports the association between PSR J1853--0842A and NGC 6712. Considering the maximum GC acceleration, Galactic acceleration, and Shklovskii effect, we place an upper limit on the intrinsic spin-down rate to be $1.11times10^{-20}rm~s~s^{-1}$. From an analysis of the eclipsing observations, we estimate the electron density of the eclipse region to be about $1.88times10^6rm cm^{-3}$. We also place an upper limit of the accretion rate from the companion is about $3.05times10^{-13}~M_{rm odot}rm~yr^{-1}$ which is comparable with some other BWs.
We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsars orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsars (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the stars association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 +/- 0.5, corresponding to a companion mass range of 0.4 to 0.7 Msun and an orbital inclination angle range of between 30 and 41 degrees, assuming a pulsar mass range of 1.4-2.0 Msun. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723-2837 indicate that it is likely a redback system. Unlike the five other Galactic redbacks discovered to date, PSR J1723-2837 has not been detected as a gamma-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.
We report on an unusually bright observation of PSR J2051$-$0827 recorded during a regular monitoring campaign of black-widow pulsar systems with the Effelsberg 100-m telescope. Through fortunate coincidence, a particularly bright scintillation maximum is simultaneous with the eclipse by the companion, enabling precise measurements of variations in the flux density, dispersion measure (DM), and scattering strength throughout the eclipse. The flux density is highly variable throughout the eclipse, with a peak 1.7 times the average away from the eclipse, and yet does not significantly decrease on average. We recover the flux density variations from the measured DM variations using geometric optics, with a relative velocity as the only free parameter. We measure an effective velocity of (470 $pm$ 10) km/s, consistent with the relative orbital motion of the companion, suggesting that the outflow velocity of the lensing material is low, or is directly along the line of sight. The 2 per cent uncertainty on the effective velocity is a formal error; systematics related to our current model are likely to dominate, and we detail several extensions to the model to be considered in a full treatment of lensing. This is a demonstration of the causal link between DM and lensing; the flux density variations can be predicted directly through the derivatives of DM. Going forward, this approach can be applied to investigate the dynamics of other eclipsing systems, and to investigate the physical nature of scintillation and lensing in the ionized interstellar medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا