Do you want to publish a course? Click here

Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates

361   0   0.0 ( 0 )
 Added by Jorge Pedr\\'os
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs in graphene/h-BN heterostructures on a piezoelectric substrate like AlN, where the SAW-induced surface modulation acts as a dynamic diffraction grating. The efficiency of the light coupling is greatly enhanced by the introduction of the h-BN film as compared to the bare graphene/AlN system. The h-BN interlayer not only significantly changes the dispersion of the SPPPs but also enhances their lifetime. The strengthening of the SPPPs is shown to be related to both the higher carrier mobility induced in graphene and the coupling with h-BN and AlN surface phonons. In addition to surface phonons, hyperbolic phonons appear in the case of multilayer h-BN films leading to hybridized hyperbolic plasmon-phonon polaritons (HPPPs) that are also mediated by the SAW. These results pave the way for engineering SAW-based graphene/h-BN plasmonic devices and metamaterials covering the mid-IR to THz range.



rate research

Read More

Being used in optoelectronic devices as ultra-thin conductor-insulator junctions, detailed investigations are needed about how exactly h-BN and graphene hybridize. Here, we present a comprehensive ab initio study of hot carrier dynamics governed by electron-phonon scattering at the h-BN/graphene interface, using graphite (bulk), monolayer and bilayer graphene as benchmark materials. In contrast to monolayer graphene, all multilayer structures possess low-energy optical phonon modes that facilitate carrier thermalization. We find that the h-BN/graphene interface represents an exception with comparatively weak coupling between low-energy optical phonons and electrons. As a consequence, the thermalization bottleneck effect, known from graphene, survives hybridization with h-BN but is substantially reduced in all other bilayer and multilayer cases considered. In addition, we show that the quantum confinement in bilayer graphene does not have a significant influence on the thermalization time compared to graphite and that bilayer graphene can hence serve as a minimal model for the bulk counterpart.
Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electro-chemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new hetero-interface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density $> 5 times 10^{13} cm^{-2}$ with mobility $> 10^3 cm^2/(Vs)$ in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.
We consider a hybrid structure formed by graphene and an insulating antiferromagnet, separated by a dielectric of thickness up to $dsimeq 500 ,nm$. When uncoupled, both graphene and the antiferromagnetic surface host their own polariton modes coupling the electromagnetic field with plasmons in the case of graphene, and with magnons in the case of the antiferromagnet. We show that the hybrid structure can host two new types of hybrid polariton modes. First, a surface magnon-plasmon polariton whose dispersion is radically changed by the carrier density of the graphene layer, including a change of sign in the group velocity. Second, a surface plasmon-magnon polariton formed as a linear superposition of graphene surface plasmon and the antiferromagnetic bare magnon. This polariton has a dispersion with two branches, formed by the anticrossing between the dispersive surface plasmon and the magnon. We discuss the potential these new modes have for combining photons, magnons, and plasmons to reach new functionalities.
We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine serum molecules molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of graphitic substrate near protein-conjugated gold nanoparticles substantially enhances the red shift of the surface plasmon resonances of the nanoparticles. Our findings show that graphene and graphite provide the same absorption band when the distance between the nanoparticles and the substrate is large. However at shorter distances, the resonant wavelength peak of graphene-particle system differs from that of graphite-particle system. Furthermore, the influence of the chemical potential of graphene on the optical spectra is also investigated.
We study the spectra and damping of surface plasmon-polaritons in double graphene layer structures. It is shown that application of bias voltage between layers shifts the edge of plasmon absorption associated with the interband transitions. This effect could be used in efficient plasmonic modulators. We reveal the influence of spatial dispersion of conductivity on plasmonic spectra and show that it results in the shift of cutoff frequency to the higher values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا