No Arabic abstract
We construct explicit lowest-Landau-level wave functions for the composite-fermion Fermi sea and its low energy excitations following a recently developed approach [Pu, Wu and Jain, Phys. Rev. B 96, 195302 (2018)] and demonstrate them to be very accurate representations of the Coulomb eigenstates. We further ask how the Berry phase associated with a closed loop around the Fermi circle, predicted to be $pi$ in a Dirac composite fermion theory satisfying particle-hole symmetry [D. T. Son, Phys. Rev. X 5, 031027 (2015)], is affected by Landau level mixing. For this purpose, we consider a simple model wherein we determine the variational ground state as a function of Landau level mixing within the space spanned by two basis functions: the lowest-Landau-level projected and the unprojected composite-fermion Fermi sea wave functions. We evaluate Berry phase for a path around the Fermi circle within this model following a recent prescription, and find that it rotates rapidly as a function of Landau level mixing. We also consider the effect of a particle-hole symmetry breaking three-body interaction on the Berry phase while confining the Hilbert space to the lowest Landau level. Our study deepens the connection between the $pi$ Berry phase and the exact particle-hole symmetry in the lowest Landau level.
We compute the effect of Landau-level-mixing on the effective two-body and three-body pseudopotentials for electrons in the lowest and second Landau levels. We find that the resulting effective three-body interaction is attractive in the lowest relative angular momentum channel. The renormalization of the two-body pseudopotentials also shows interesting structure. We comment on the implications for the $ u=5/2$ fractional quantum Hall state.
The half filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole symmetry is preserved, the composite Fermions experience a quantized $pi$-Berry phase upon winding around the composite Fermi-surface, analogous to Dirac fermions at the surface of a 3D topological insulator. In contrast, the effective low energy theory of the composite fermion liquid originally proposed by HLR lacks particle-hole symmetry and has vanishing Berry phase. In this paper, we explain how thermoelectric transport measurements can be used to test the Dirac nature of the composite Fermions by quantitatively extracting this Berry phase. First we point out that longitudinal thermopower (Seebeck effect) is non-vanishing due to the unusual nature of particle hole symmetry in this context and is not sensitive to the Berry phase. In contrast, we find that off-diagonal thermopower (Nernst effect) is directly related to the topological structure of the composite Fermi surface, vanishing for zero Berry phase and taking its maximal value for $pi$ Berry phase. In contrast, in purely electrical transport signatures the Berry phase contributions appear as small corrections to a large background signal, making the Nernst effect a promising diagnostic of the Dirac nature of composite fermions.
We present a theory of the isotropic-nematic quantum phase transition in the composite Fermi liquid arising in half-filled Landau levels. We show that the quantum phase transition between the isotropic and the nematic phase is triggered by an attractive quadrupolar interaction between electrons, as in the case of conventional Fermi liquids. We derive the theory of the nematic state and of the phase transition. This theory is based on the flux attachment procedure which maps an electron liquid in half-filled Landau levels into the composite Fermi liquid close to a nematic transition. We show that the local fluctuations of the nematic order parameters act as an effective dynamical metric interplaying with the underlying Chern-Simons gauge fields associated with the flux attachment. Both the fluctuations of the Chern-Simons gauge field and the nematic order parameter can destroy the composite fermion quasiparticles and drive the system into a non-Fermi liquid state. The effective field theory for the isotropic-nematic phase transition has $z = 3$ dynamical exponent due to Landau damping effects. We show that there is a Berry phase type term which governs the effective dynamics of the nematic order parameter fluctuations, which can be interpreted as a non-universal Hall viscosity of the dynamical metric. We show that the effective field theory has a Wen-Zee-type term. Both terms originate from the time-reversal breaking fluctuation of the Chern-Simons gauge fields. We present a perturbative computation of the Hall viscosity and also show that this term is also obtained by a Ward identity. We show that the disclination of the nematic fluid, carries an electric charge. We show that a resonance observed in radio-frequency conductivity experiments can be interpreted as a Goldstone nematic mode gapped by lattice effects.
We study the effects of Landau level mixing in the limit of weak electron interaction. We use a numerical method to obtain the two- and three-body corrections to quantum Hall pseudopotentials, which are exact to lowest order in the Landau level mixing parameter. Our results are in general agreement with certain analytic results (some derived here, some derived by other authors) in the thermodynamic limit. We find that the convergence to this thermodynamic limit can be slow. This suggests that errors could occur if one tries to use pseudopotentials derived in a thermodynamic limit for numerical work on finite systems.
In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor $ u=5/2$. At this filling factor a pressure-induced quantum phase transition was observed from the paired fractional quantum Hall state to the quantum Hall nematic. Here we show that the pressure induced paired-to-nematic transition also develops at $ u=7/2$, demonstrating therefore this transition in both spin branches of the second orbital Landau level. However, we find that pressure is not the only parameter controlling this transition. Indeed, ground states consistent with those observed under pressure also develop in a sample measured at ambient pressure, but in which the electron-electron interaction was tuned close to its value at the quantum critical point. Our experiments suggest that electron-electron interactions play a critical role in driving the paired-to-nematic transition.