No Arabic abstract
Efforts to describe nuclear structure and dynamics from first principles have advanced significantly in recent years. Exact methods for light nuclei are now able to include continuum degrees of freedom and treat structure and reactions on the same footing, and multiple approximate, computationally efficient many-body methods have been developed that can be routinely applied for medium-mass nuclei. This has made it possible to confront modern nuclear interactions from Chiral Effective Field Theory, that are rooted in Quantum Chromodynamics with a wealth of experimental data. Here, we discuss one of these efficient new many-body methods, the In-Medium Similarity Renormalization Group (IMSRG), and its applications in modern nuclear structure theory. The IMSRG evolves the nuclear many-body Hamiltonian in second-quantized form through continuous unitary transformations that can be implemented with polynomial computational effort. Through suitably chosen generators, we drive the matrix representation of the Hamiltonian in configuration space to specific shapes, e.g., to implement a decoupling of low- and high-energy scales, or to extract energy eigenvalues for a given nucleus. We present selected results from Multireference IMSRG (MR-IMSRG) calculations of open-shell nuclei, as well as proof-of-principle applications for intrinsically deformed medium-mass nuclei. We discuss the successes and prospects of merging the (MR-)IMSRG with many-body methods ranging from Configuration Interaction to the Density Matrix Renormalization Group, with the goal of achieving an efficient simultaneous description of dynamic and static correlations in atomic nuclei.
The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.
We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrodinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory, Configuration-Interaction Monte Carlo, and the Self-Consistent Greens Function approach. The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.
Over the past decade the in-medium similarity renormalization group (IMSRG) approach has proven to be a powerful and versatile ab initio many-body method for studying medium-mass nuclei. So far, the IMSRG was limited to the approximation in which only up to two-body operators are incorporated in the renormalization group flow, referred to as the IMSRG(2). In this work, we extend the IMSRG(2) approach to fully include three-body operators yielding the IMSRG(3) approximation. We use a perturbative scaling analysis to estimate the importance of individual terms in this approximation and introduce truncations that aim to approximate the IMSRG(3) at a lower computational cost. The IMSRG(3) is systematically benchmarked for different nuclear Hamiltonians for ${}^{4}text{He}$ and ${}^{16}text{O}$ in small model spaces. The IMSRG(3) systematically improves over the IMSRG(2) relative to exact results. Approximate IMSRG(3) truncations constructed based on computational cost are able to reproduce much of the systematic improvement offered by the full IMSRG(3). We also find that the approximate IMSRG(3) truncations behave consistently with expectations from our perturbative analysis, indicating that this strategy may also be used to systematically approximate the IMSRG(3).
We have developed a novel ab initio Gamow in-medium similarity renormalization group (Gamow IMSRG) in the complex-energy Berggren framework. The advanced Gamow IMSRG is capable of describing the resonance and nonresonant continuum properties of weakly bound and unbound nuclear many-body systems. As test grounds, carbon and oxygen isotopes have been calculated with chiral two- and three-nucleon forces from the effective field theory. Resonant states observed in the neutron-dripline 24O are well reproduced. The halo structure of the known heaviest Borromean nucleus 22C is clearly seen by calculating the density distribution in which the continuum s channel plays a crucial role. Furthermore, we predict low-lying resonant excited states in 22C. The Gamow IMSRG provides tractable ab initio calculations of weakly bound and unbound open quantum systems.
One of the main challenges for ab initio nuclear many-body theory is the growth of computational and storage costs as calculations are extended to heavy, exotic, and structurally complex nuclei. Here, we investigate the factorization of nuclear interactions as a means to address this issue. We perform Singular Value Decompositions of nucleon-nucleon interactions in partial wave representation and study the dependence of the singular value spectrum on interaction characteristics like regularization scheme and resolution scales. We develop and implement the Similarity Renormalization Group (SRG) evolution of the factorized interaction, and demonstrate that this SVD-SRG approach accurately preserves two-nucleon observables. We find that low-resolution interactions allow the truncation of the SVD at low rank, and that a small number of relevant components is sufficient to capture the nuclear interaction and perform an accurate SRG evolution, while the Coulomb interaction requires special consideration. The rank is uniform across all partial waves, and almost independent of the basis choice in the tested cases. This suggests an interpretation of the relevant singular components as mere representations of a small set of abstract operators that can describe the interaction and its SRG flow. Following the traditional workflow for nuclear interactions, we discuss how the transformation between the center-of-mass and laboratory frames creates redundant copies of the partial wave components when implemented in matrix representation, and we discuss strategies for mitigation. Finally, we test the low-rank approximation to the SRG-evolved interactions in many-body calculations using the In-Medium SRG. By including nuclear radii in our analysis, we verify that the implementation of the SRG using the singular vectors of the interaction does not spoil the evolution of other observables.