Do you want to publish a course? Click here

Spectrographs with holographic gratings on freeform surfaces: design approach and application for the LUVOIR mission

100   0   0.0 ( 0 )
 Added by Emmanuel Hugot
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present paper we demonstrate the approach to use a holographic grating on a freeform surface for advanced spectrographs design. On the example POLLUX spectropolarimeter medium-UV channel we chow that such a grating can operate as a cross-disperser and a camera mirror at the same time. It provides the image quality high enough to reach the spectral resolving power of 126 359-133 106 between 11.5 and 195 nm, which is higher than the requirement. Also we show a possibility to use a similar element working in transmission to build an unobscured double-Schmidt spectrograph. The spectral resolving power reaches 2750 for a long slit. It is also shown that the parameters of both the gratings are feasible with the current technologies.

rate research

Read More

In the present paper we demonstrate the approach of using a holographic grating on a freeform surface for advanced spectrographs design. We discuss the surface and groove pattern description used for ray-tracing. Moreover, we present a general procedure of diffraction efficiency calculation, which accounts for the change of hologram recording and operation conditions across the surface. The primary application of this approach is the optical design of the POLLUX spectropolarimeter for the LUVOR mission project where a freeform holographic grating operates simultaneously as a cross-disperser and a camera with high resolution and high dispersion. The medium ultraviolet channel design of POLLUX is considered in detail as an example. Its resolving power reaches [126,000-133,000] in the region of 118.5-195 nm. Also, we show a possibility to use a similar element working in transmission to build an unobscured double-Schmidt spectrograph. The spectral resolving power reaches 4000 in the region 350-550 nm and remains stable along the slit.
The advent of extremely large telescopes will bring unprecedented light-collecting power and spatial resolution, but it will also lead to a significant increase in the size and complexity of focal-plane instruments. The use of freeform mirrors could drastically reduce the number of components in optical systems. Currently, manufacturing issues limit the common use of freeform mirrors at short wavelengths. This article outlines the use of freeform mirrors in astronomical instruments with a description of two efficient freeform optical systems. A new manufacturing method is presented which seeks to overcome the manufacturing issues through hydroforming of thin polished substrates. A specific design of an active array is detailed, which will compensate for residual manufacturing errors, thermoelastic deformation, and gravity-induced errors during observations. The combined hydroformed mirror and the active array comprise the Freeform Active Mirror Experiment, which will produce an accurate, compact, and stable freeform optics dedicated to visible and near-infrared observations.
We describe a dispersive unit consisting of cascaded volume-phase holographic gratings for spectroscopic applications. Each of the gratings provides high diffractive efficiency in a relatively narrow wavelength range and transmits the rest of the radiation to the 0th order of diffraction. The spectral lines formed by different gratings are centered in the longitudal direction and separated in the transverse direction due to tilt of the gratings around two axes. We consider a technique of design and optimization of such a scheme. It allows to define modulation of index of refraction and thickness of the holographic layer for each of the gratings as well as their fringes frequencies and inclination angles. At the first stage the gratings parameters are found approximately using analytical expressions of Kogelniks coupled wave theory. Then each of the grating starting from the longwave sub-range is optimized separately by using of numerical optimization procedure and rigorous coupled wave analysis to achieve a high diffraction efficiency profile with a steep shortwave edge. In parallel such targets as ray aiming and linear dispersion maintenance are controlled by means of ray tracing. We demonstrate this technique on example of a small-sized spectrograph for astronomical applications. It works in the range of 500-650 nm and uses three gratings covering 50 nm each. It has spectral resolution of 6130 - 12548. Obtaining of the asymmetrical efficiency curve is shown with use of dichromated gelatin and a photopolymer. Change of the curve shape allows to increase filling coefficient for the target sub-range up to 2.3 times.
Reflective imaging systems form an important part of photonic devices such as spectrometers, telescopes, augmented and virtual reality headsets or lithography platforms. Reflective optics provide unparalleled spectral performance and can be used to reduce overall volume and weight. So far, most reflective designs have focused on two or three reflections, while four-reflection freeform designs can deliver a higher light throughput (faster F-number) as well as a larger field-of-view (FOV). However, advanced optical design strategies for four-reflection freeform systems have been rarely reported in literature. This is due to the increased complexity in solution space but also the fact that additional mirrors hinder a cost-effective realization (manufacture, alignment, etc.). Recently, we have proposed a novel design method to directly calculate the freeform surface coefficients while merely knowing the mirror positions and tilts. Consequently, this method allows laymen with basic optical design knowledge to calculate first time right freeform imaging systems in a matter of minutes. This contrasts with most common freeform design processes, which requires considerable experience, intuition or guesswork. Firstly, we demonstrate the effectiveness of the proposed method for a four-mirror high-throughput telescope with 250mm-focal-length, F/2.5 and a wide rectangular FOV of 8.5{deg} x 25.5{deg}. In a subsequent step, we propose an effective three-mirror but four-reflection imaging system, which consists of two freeform mirrors and one double-reflection spherical mirror. Compared with common three-mirror and three-reflection imagers, our novel multi-reflection system shows unprecedented possibilities for an economic implementation while drastically reducing the overall volume.
99 - Kevin France 2017
The Large Ultraviolet / Optical / Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000-18,000) and medium (R = 30,000-65,000) resolution modes across the far-ultraviolet (FUV: 100-200 nm) and near-ultraviolet (NUV: 200-400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 x 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100-200nm, 13 milliarcsecond angular resolution, 2 x 2 arcminute field-of-view) that will employ a complement of narrow and medium-band filters. We present an overview of LUMOS observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example LUMOS 100-hour Highlights observing programs are presented to demonstrate the potential power of LUVOIRs ultraviolet spectroscopic capabilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا