Do you want to publish a course? Click here

Amortized Inference Regularization

343   0   0.0 ( 0 )
 Added by Rui Shu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The variational autoencoder (VAE) is a popular model for density estimation and representation learning. Canonically, the variational principle suggests to prefer an expressive inference model so that the variational approximation is accurate. However, it is often overlooked that an overly-expressive inference model can be detrimental to the test set performance of both the amortized posterior approximator and, more importantly, the generative density estimator. In this paper, we leverage the fact that VAEs rely on amortized inference and propose techniques for amortized inference regularization (AIR) that control the smoothness of the inference model. We demonstrate that, by applying AIR, it is possible to improve VAE generalization on both inference and generative performance. Our paper challenges the belief that amortized inference is simply a mechanism for approximating maximum likelihood training and illustrates that regularization of the amortization family provides a new direction for understanding and improving generalization in VAEs.



rate research

Read More

Despite the recent success in probabilistic modeling and their applications, generative models trained using traditional inference techniques struggle to adapt to new distributions, even when the target distribution may be closely related to the ones seen during training. In this work, we present a doubly-amortized variational inference procedure as a way to address this challenge. By sharing computation across not only a set of query inputs, but also a set of different, related probabilistic models, we learn transferable latent representations that generalize across several related distributions. In particular, given a set of distributions over images, we find the learned representations to transfer to different data transformations. We empirically demonstrate the effectiveness of our method by introducing the MetaVAE, and show that it significantly outperforms baselines on downstream image classification tasks on MNIST (10-50%) and NORB (10-35%).
Generalization is a central problem in Machine Learning. Indeed most prediction methods require careful calibration of hyperparameters usually carried out on a hold-out textit{validation} dataset to achieve generalization. The main goal of this paper is to introduce a novel approach to achieve generalization without any data splitting, which is based on a new risk measure which directly quantifies a models tendency to overfit. To fully understand the intuition and advantages of this new approach, we illustrate it in the simple linear regression model ($Y=Xbeta+xi$) where we develop a new criterion. We highlight how this criterion is a good proxy for the true generalization risk. Next, we derive different procedures which tackle several structures simultaneously (correlation, sparsity,...). Noticeably, these procedures textbf{concomitantly} train the model and calibrate the hyperparameters. In addition, these procedures can be implemented via classical gradient descent methods when the criterion is differentiable w.r.t. the hyperparameters. Our numerical experiments reveal that our procedures are computationally feasible and compare favorably to the popular approach (Ridge, LASSO and Elastic-Net combined with grid-search cross-validation) in term of generalization. They also outperform the baseline on two additional tasks: estimation and support recovery of $beta$. Moreover, our procedures do not require any expertise for the calibration of the initial parameters which remain the same for all the datasets we experimented on.
We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model. The benefits and negative of the GP-LVM are complementary to the Variational Autoencoder, the former provides interpretable low-dimensional latent representations while the latter is able to handle large amounts of data and can use non-Gaussian likelihoods. Our inspiration for this paper is to marry these two approaches and reap the benefits of both. In order to do so we will introduce a novel approximate inference scheme inspired by the GP-LVM and the VAE. We show experimentally that the approximation allows the capacity of the generative bottle-neck (Z) of the VAE to be arbitrarily large without losing a highly interpretable representation, allowing reconstruction quality to be unlimited by Z at the same time as a low-dimensional space can be used to perform ancestral sampling from as well as a means to reason about the embedded data.
Deep neural networks (DNN) and Gaussian processes (GP) are two powerful models with several theoretical connections relating them, but the relationship between their training methods is not well understood. In this paper, we show that certain Gaussian posterior approximations for Bayesian DNNs are equivalent to GP posteriors. This enables us to relate solutions and iterations of a deep-learning algorithm to GP inference. As a result, we can obtain a GP kernel and a nonlinear feature map while training a DNN. Surprisingly, the resulting kernel is the neural tangent kernel. We show kernels obtained on real datasets and demonstrate the use of the GP marginal likelihood to tune hyperparameters of DNNs. Our work aims to facilitate further research on combining DNNs and GPs in practical settings.
Gaussian state space models have been used for decades as generative models of sequential data. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption. We introduce a unified algorithm to efficiently learn a broad class of linear and non-linear state space models, including variants where the emission and transition distributions are modeled by deep neural networks. Our learning algorithm simultaneously learns a compiled inference network and the generative model, leveraging a structured variational approximation parameterized by recurrent neural networks to mimic the posterior distribution. We apply the learning algorithm to both synthetic and real-world datasets, demonstrating its scalability and versatility. We find that using the structured approximation to the posterior results in models with significantly higher held-out likelihood.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا