Do you want to publish a course? Click here

Statistical parameter inference of bacterial swimming strategies

55   0   0.0 ( 0 )
 Added by Maximilian Seyrich
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a detailed stochastic description of the swimming motion of an E.coli bacterium in two dimension, where we resolve tumble events in time. For this purpose, we set up two Langevin equations for the orientation angle and speed dynamics. Calculating moments, distribution and autocorrelation functions from both Langevin equations and matching them to the same quantities determined from data recorded in experiments, we infer the swimming parameters of E.coli . They are the tumble rate ${lambda}$, the tumble time $r^{-1}$ , the swimming speed $v_0$ , the strength of speed fluctuations ${sigma}$, the relative height of speed jumps ${eta}$, the thermal value for the rotational diffusion coefficient $D_0$ , and the enhanced rotational diffusivity during tumbling $D_T$ . Conditioning the observables on the swimming direction relative to the gradient of a chemoattractant, we infer the chemotaxis strategies of E.coli . We confirm the classical strategy of a lower tumble rate for swimming up the gradient but also a smaller mean tumble angle (angle bias). The latter is realized by shorter tumbles as well as a slower diffusive reorientation. We also find that speed fluctuations are increased by about 30% when swimming up the gradient compared to the reversed direction.



rate research

Read More

In a classic paper, Edward Purcell analysed the dynamics of flagellated bacterial swimmers and derived a geometrical relationship which optimizes the propulsion efficiency. Experimental measurements for wild-type bacterial species E. coli have revealed that they closely satisfy this geometric optimality. However, the dependence of the flagellar motor speed on the load and more generally the role of the torque-speed characteristics of the flagellar motor is not considered in Purcells original analysis. Here we derive a tuned condition representing a match between the flagella geometry and the torque-speed characteristics of the flagellar motor to maximize the bacterial swimming speed for a given load. This condition is independent of the geometric optimality condition derived by Purcell and interestingly this condition is not satisfied by wild-type E. coli which swim 2-3 times slower than the maximum possible speed given the amount of available motor torque. Our analysis also reveals the existence of an anomalous propulsion regime, where the swim speed increases with increasing load (drag). Finally, we present experimental data which supports our analysis.
The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks within cells to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.
Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an inverse domino effect. The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.
The skill to swim fast results from the interplay between generating high thrust while minimizing drag. In front crawl, swimmers achieve this goal by adapting their inter-arm coordination according to the race pace. A transition has been observed from a catch-up pattern of coordination (i.e. lag time between the propulsion of the two arms) to a superposition pattern of coordination as the velocity increases. Expert swimmers choose a catch-up coordination pattern at low velocities with a constant relative lag time of glide during the cycle and switch to a maximum propulsion force strategy at higher velocities. This transition is explained using a burst-and-coast model. At low velocities, the choice of coordination can be understood through two parameters: the time of propulsion and the gliding effectiveness. These parameters can characterize a swimmer and help to optimize their technique.
Many microorganisms and artificial microswimmers use helical appendages in order to generate locomotion. Though often rotated so as to produce thrust, some species of bacteria such Spiroplasma, Rhodobacter sphaeroides and Spirochetes induce movement by deforming a helical-shaped body. Recently, artificial devices have been created which also generate motion by deforming their helical body in a non-reciprocal way (Mourran et al., Adv. Mater., 29, 1604825, 2017). Inspired by these systems, we investigate the transport of a deforming helix within a viscous fluid. Specifically, we consider a swimmer that maintains a helical centreline and a single handedness while changing its helix radius, pitch and wavelength uniformly across the body. We first discuss how a deforming helix can create a non-reciprocal translational and rotational swimming stroke and identify its principle direction of motion. We then determine the leading-order physics for helices with small helix radius before considering the general behaviour for different configuration parameters and how these swimmers can be optimised. Finally, we explore how the presence of walls, gravity, and defects in the centreline allow the helical device to break symmetries, increase its speed, and generate transport in directions not available to helices in bulk fluids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا