Analysis of quantum interface between Rydberg-blocked atomic ensemble and cavity optical field with two-photon transition


Abstract in English

We study the atom-photon quantum interface with intracavity Rydberg-blocked atomic ensemble where the ground-Rydberg transition is realized by two-photon transition. Via theoretical analysis, we report our recent findings of the Jaynes-Cummings model on optical domain and robust atom-photon quantum gate enabled by this platform. The requirement on the implementation is mild which includes an optical cavity of moderately high finesse, typical alkali atoms such as Rb or Cs and the condition that cold atomic ensemble is well within the Rydberg blockade radius. The analysis focuses on the atomic ensembles collective coupling to the quantized optical field in the cavity mode. We demonstrate its capability to serve as a controlled-PHASE gate between photonic qubits and matter qubits. The detrimental effects associated with several major decoherence factors of this system are also considered in the analysis.

Download