No Arabic abstract
Existing investigations of the anomalous Hall effect i.e. a current flowing transverse to the electric field in the absence of an external magnetic field) are concerned with the transport current. However, for many applications one needs to know the total current, including its pure magnetization part. In this paper, we employ the two-dimensional massive Dirac equation to find the exact universal total current flowing along a potential step of arbitrary shape. For a spatially slowly varying potential we find the current density $mathbf{j}(vec r)$ and the energy distribution of the current density $mathbf{j}^varepsilon(vec r)$. The latter turns out to be unexpectedly nonuniform, behaving like a $delta$-function at the border of the classically accessible area at energy~$varepsilon$. To demonstrate explicitly the difference between the magnetization and transport currents we consider the transverse shift of an electron ray in an electric field.
Spin-Hall conductivity (SHC) of fully relativistic (4x4 matrix) Dirac electrons is studied based on the Kubo formula aiming at possible application to bismuth and bismuth-antimony alloys. It is found that there are two distinct contributions to SHC, one only from the states near the Fermi energy and the other from all the occupied states. The latter remains even in the insulating state, i.e., when the chemical potential lies in the band-gap, and turns to have the same dependences on the chemical potential as the orbital susceptibility (diamagnetism), a surprising fact. These results are applied to bismuth-antimony alloys and the doping dependence of the SHC is proposed.
Dirac fermions are actively investigated, and the discovery of the quantized anomalous Hall effect of massive Dirac fermions has spurred the promise of low-energy electronics. Some materials hosting Dirac fermions are natural platforms for interlayer coherence effects such as Coulomb drag and exciton condensation. Here we determine the role played by the anomalous Hall effect in Coulomb drag in massive Dirac fermion systems. We focus on topological insulator films with out-of plane magnetizations in both the active and passive layers. The transverse response of the active layer is dominated by a topological term arising from the Berry curvature. We show that the topological mechanism does not contribute to Coulomb drag, yet the longitudinal drag force in the passive layer gives rise to a transverse drag current. This anomalous Hall drag current is independent of the active-layer magnetization, a fact that can be verified experimentally. It depends non-monotonically on the passive-layer magnetization, exhibiting a peak that becomes more pronounced at low densities. These findings should stimulate new experiments and quantitative studies of anomalous Hall drag.
Spin-Hall conductivity $sigma_{{rm s}xy}$ and orbital susceptibility $chi$ are investigated for the anisotropic Wolff Hamiltonian, which is an effective Hamiltonian common to Dirac electrons in solids. It is found that, both for $sigma_{{rm s}xy}$ and $chi$, the effect of anisotropy appears only in the prefactors, which is given as the Gaussian curvature of the energy dispersion, and their functional forms are equivalent to those of the isotropic Wolff Hamiltonian. As a result, it is revealed that the relationship between the spin Hall conductivity and the orbital susceptibility in the insulating state, $sigma_{{rm s}xy}=(3mc^2/hbar e)chi$, which was firstly derived for the isotropic Wolff Hamiltonian, is also valid for the anisotropic Wolff Hamiltonian. Based on this theoretical finding, the magnitude of spin-Hall conductivity is estimated for bismuth and its alloys with antimony by that of orbital susceptibility, which has good correspondence between theory and experiments. The magnitude of spin-Hall conductivity turns out to be as large as $esigma_{{rm s}xy} sim 10^4 {Omega}^{-1}{rm cm}^{-1}$, which is about 100 times larger than that of Pt.
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, an abrupt breakdown of the dissipationless state occurs with a relatively small critical current, limiting the applications of the QAHE. We investigate the mechanism of this breakdown by studying multi-terminal devices and identified that the electric field created between opposing chiral edge states lies at the origin. We propose that electric-field-driven percolation of two-dimensional charge puddles in the gapped surface states of compensated topological-insulator films is the most likely cause of the breakdown.
We study the properties of an ultracold Fermi gas loaded in an optical square lattice and subjected to an external and classical non-Abelian gauge field. We show that this system can be exploited as an optical analogue of relativistic quantum electrodynamics, offering a remarkable route to access the exotic properties of massless Dirac fermions with cold atoms experiments. In particular we show that the underlying Minkowski space-time can also be modified, reaching anisotropic regimes where a remarkable anomalous quantum Hall effect and a squeezed Landau vacuum could be observed.