Do you want to publish a course? Click here

$b to c tau u_{tau}$ Decays: A Catalogue to Compare, Constrain, and Correlate New Physics Effects

98   0   0.0 ( 0 )
 Added by Sunando Patra
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we have predicted the standard model (SM) values of the asymmetric and angular observables in $Bto D^{(ast)}tau u_{tau}$ decays, using the results of the new up-to-date analysis in $Bto D^{(*)}ell u_{ell}$. We have also revisited the SM prediction of the inclusive ratio $mathcal{R}_{X_c}$, and have given its values in different schemes of the charm quark mass. This is the first analysis which includes all the known corrections in the SM. In addition, we have analysed the $bto ctau u_tau$ decay modes in a model-independent framework of effective field theory beyond the standard model. Considering all the possible combinations of the effective operators in $b to c tau u_{tau}$ decays and using the Akaike Information Criterion, we find out the scenarios which can best explain the available data on these channels. In the selected scenarios, best-fit values and correlations of the new parameters are extracted. Using these results, predictions are made on various observables in the exclusive and inclusive semitaunic $b to c $ decays. The graphical correlations between these observables are shown, which are found to be useful in discriminating various new physics scenarios.



rate research

Read More

The potential of performing a combined analysis of the strangeness-changing decays $tau^{-}to K_{S}pi^{-} u_{tau}$ and $tau^{-}to K^{-}eta u_{tau}$ for unveiling the $K^{*}(1410)$ resonance pole parameters is illustrated. Our study is carried out within the framework of Chiral Perturbation Theory, including resonances as explicit degrees of freedom. Resummation of final state interactions are considered through a dispersive parameterization of the required form factors. A considerable improvement in the determination of the pole position with mass $M_{K^{*}(1410)}=1304pm17$ MeV and width $Gamma_{K^{*}(1410)}=171pm62$ MeV is obtained.
A general analysis of possible violation of CP in processes like $tau to Kpi u$, for unpolarized $tau$ is presented. In this paper, we derive the new contributions to the effective Hamiltonian governs $vertDelta S vert=1$ semileptonic tau decays in the framework of two Higgs doublet model with generic Yukawa structure and Leptoquarks models. Within these models, we list all operators, in the effective Hamiltonian and provide analytical expression for their corresponding Wilson coefficients. Moreover, we analyze the role of the different contributions, originating from the scalar, vecor and tensor hadronic currents, in generating direct CP asymmetry in the decay rate of $tau^-to K^-pi^0 u_tau$. We show that non vanishing direct CP asymmetry in the decay rate of $tau^-to K^-pi^0 u_tau$ can be generated due to the presence of both, the weak phase in the Wilson coefficient corresponding to the tensor operator and the strong phase difference resulting from the interference between the form factors expressing the matrix elements of the vector and tensor hadronic currents. After taking into account all relevant constraints, we find that the generated direct CP asymmetry is of order $10^{-8}$ which is several orders of magnitude larger than the standard model prediction. We show also that, in two Higgs doublet model with generic Yukawa structure , direct local or non integrated CP violation can be as large as $0.3$ % not far from experimental possibilities. This kind of asymmetry can be generated due to the interference between vector and scalar contributions with different weak phases which is not the case in the SM.
We study effects of charged Higgs boson exchange in $bar B to D tau bar u_{tau}$. The Yukawa couplings of Model II of two-Higgs-doublet model, which has the same Yukawa couplings as MSSM, is considered. We evaluate the decay rate including next-to-leading QCD corrections and estimate uncertainties in the theoretical calculation. Our analysis will contribute to probe an extended Higgs sector at B factory experiments.
We analyze the second-class current decays $tau^{-}topi^{-}eta^{(prime)} u_{tau}$ in the framework of Chiral Perturbation Theory with resonances. Taking into account $pi^{0}$-$eta$-$eta^{prime}$ mixing, the $pi^{-}eta^{(prime)}$ vector form factor is extracted, in a model-independent way, using existing data on the $pi^{-}pi^{0}$ one. For the participant scalar form factor, we have considered different parameterizations ordered according to their increasing fulfillment of analyticity and unitarity constraints. We start with a Breit-Wigner parameterization dominated by the $a_{0}(980)$ scalar resonance and after we include its excited state, the $a_{0}(1450)$. We follow by an elastic dispersion relation representation through the Omn`{e}s integral. Then, we illustrate a method to derive a closed-form expression for the $pi^{-}eta$, $pi^{-}eta^{prime}$ (and $K^{-}K^{0}$) scalar form factors in a coupled-channels treatment. Finally, predictions for the branching ratios and spectra are discussed emphasizing the error analysis. An interesting result of this study is that both $tau^{-}topi^{-}eta^{(prime)} u_{tau}$ decay channels are promising for the soon discovery of second-class currents at Belle-II. We also predict the relevant observables for the partner $eta^{(prime)}_{ell 3}$ decays, which are extremely suppressed in the Standard Model.
The ratio of branching fractions ${cal{R}}(D^{*-})equiv {cal{B}}(B^0 to D^{*-} tau^+ u_{tau})/{cal{B}}(B^0 to D^{*-} mu^+ u_{mu})$ is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 Tev, corresponding to an integrated luminosity of 3$~$fb$^{-1}$. For the first time ${cal{R}}(D^{*-})$ is determined using the $tau$ lepton decays with three charged pions in the final state. The $B^0 to D^{*-} tau^+ u_{tau}$ yield is normalized to that of the $B^0to D^{*-} pi^+pi^-pi^+$ mode, providing a measurement of ${cal{B}}(B^0to D^{*-}tau^+ u_{tau})/{cal{B}}(B^0to D^{*-}pi^+pi^-pi^+) = 1.97 pm 0.13 pm 0.18$, where the first uncertainty is statistical and the second systematic. The value of ${cal{B}}(B^0 to D^{*-} tau^+ u_{tau}) = (1.42 pm 0.094 pm 0.129 pm 0.054)% $ is obtained, where the third uncertainty is due to the limited knowledge of the branching fraction of the normalization mode. Using the well-measured branching fraction of the $B^0 to D^{*-} mu^+ u_{mu}$ decay, a value of ${cal{R}}(D^{*-}) = 0.291 pm 0.019 pm 0.026 pm 0.013$ is established, where the third uncertainty is due to the limited knowledge of the branching fractions of the normalization and $B^0to D^{*-}mu^+ u_{mu}$ modes. This measurement is in agreement with the Standard Model prediction and with previous results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا