Orbits in $(mathbb{P}^r)^n$ and equivariant quantum cohomology


Abstract in English

We compute the $GL_{r+1}$-equivariant Chow class of the $GL_{r+1}$-orbit closure of any point $(x_1, ldots, x_n) in (mathbb{P}^r)^n$ in terms of the rank polytope of the matroid represented by $x_1, ldots, x_n in mathbb{P}^r$. Using these classes and generalizations involving point configurations in higher dimensional projective spaces, we define for each $dtimes n$ matrix $M$ an $n$-ary operation $[M]_hbar$ on the small equivariant quantum cohomology ring of $mathbb{P}^r$, which is the $n$-ary quantum product when $M$ is an invertible matrix. We prove that $M mapsto [M]_hbar$ is a valuative matroid polytope association. Like the quantum product, these operations satisfy recursive properties encoding solutions to enumerative problems involving point configurations of given moduli in a relative setting. As an application, we compute the number of line sections with given moduli of a general degree $2r+1$ hypersurface in $mathbb{P}^r$, generalizing the known case of quintic plane curves.

Download