No Arabic abstract
The calculation of excited state energies of electronic structure Hamiltonians has many important applications, such as the calculation of optical spectra and reaction rates. While low-depth quantum algorithms, such as the variational quantum eigenvalue solver (VQE), have been used to determine ground state energies, methods for calculating excited states currently involve the implementation of high-depth controlled-unitaries or a large number of additional samples. Here we show how overlap estimation can be used to deflate eigenstates once they are found, enabling the calculation of excited state energies and their degeneracies. We propose an implementation that requires the same number of qubits as VQE and at most twice the circuit depth. Our method is robust to control errors, is compatible with error-mitigation strategies and can be implemented on near-term quantum computers.
Adiabatic quantum computation (AQC), which is particularly useful for combinatorial optimization, becomes more powerful by using excited states, instead of ground states. However, the excited-state AQC is prone to errors due to dissipation. Here we propose the excited-state AQC started with the most stable state, i.e., the vacuum state. This counterintuitive approach becomes possible by using a driven quantum system, or more precisely, a network of Kerr-nonlinear parametric oscillators (KPOs). By numerical simulations, we show that some hard instances, where standard ground-state AQC with KPOs fails to find their optimal solutions, can be solved by the present approach, where nonadiabatic transitions are rather utilized. We also show that the use of the vacuum state as an initial state leads to robustness against errors due to dissipation, as expected, compared to the use of a really excited (nonvacuum) state as an initial state. Thus, the present work offers new possibilities for quantum computation and driven quantum systems.
We develop an extension of the variational quantum eigensolver (VQE) algorithm - multistate, contracted VQE (MC-VQE) - that allows for the efficient computation of the transition energies between the ground state and several low-lying excited states of a molecule, as well as the oscillator strengths associated with these transitions. We numerically simulate MC-VQE by computing the absorption spectrum of an ab initio exciton model of an 18-chromophore light-harvesting complex from purple photosynthetic bacteria.
Universal quantum computation using optical coherent states is studied. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.
Preparation of Gibbs distributions is an important task for quantum computation. It is a necessary first step in some types of quantum simulations and further is essential for quantum algorithms such as quantum Boltzmann training. Despite this, most methods for preparing thermal states are impractical to implement on near-term quantum computers because of the memory overheads required. Here we present a variational approach to preparing Gibbs states that is based on minimizing the free energy of a quantum system. The key insight that makes this practical is the use of Fourier series approximations to the logarithm that allows the entropy component of the free-energy to be estimated through a sequence of simpler measurements that can be combined together using classical post processing. We further show that this approach is efficient for generating high-temperature Gibbs states, within constant error, if the initial guess for the variational parameters for the programmable quantum circuit are sufficiently close to a global optima. Finally, we examine the procedure numerically and show the viability of our approach for five-qubit Hamiltonians using Trotterized adiabatic state preparation as an ansatz.
We suggest a regular method of achieving an extremely long lifetime of a collective singly excited state in a generic small-size ensemble of N identical atoms. The decay rate Gamma_N of such a `superdark state can be as small as Gamma_N propto Gamma(r/lambda)^{2(N-1)} (Gamma is the radiative decay rate of an individual atom, r and lambda are the system size and the wavelength of the radiation, respectively), i.e., considerably smaller than in any of the systems suggested up to now. The method is based on a special fine tuning of the atomic Hamiltonian: namely, on a proper position-dependent adjustment of atomic transition frequencies. So chosen set of the control parameters is sufficient to ensure the minimum of the spontaneous decay rate of the engineered state in a generic ensemble of atoms (`qubits).