On Kostant Root Systems for Lie Superalgebras


Abstract in English

We study the eigenspace decomposition of a basic classical Lie superalgebra under the adjoint action of a toral subalgebra, thus extending results of Kostant. In recognition of Kostants contribution we refer to the eigenspaces appearing in the decomposition as Kostant roots. We then prove that Kostant root systems inherit the main properties of classical root systems. Our approach is combinatorial in nature and utilizes certain graphs naturally associated with Kostant root systems. In particular, we reprove Kostants results without making use of the Killing form.

Download