Spectral properties of the square-lattice antiferromagnetic J1-J2 Heisenberg model: confinement and deconfinement of spinons


Abstract in English

Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattice. In the Neel phase for $J_{2}lesssim0.4J_{1}$, in addition to the dominant magnon excitation, there is an obvious continuum close to $(pi,0)$ in the Brillouin zone indicating the deconfined spin-1/2 spinon excitations. In the stripe phase for $J_{2}gtrsim0.6J_{1}$, we find similar high-energy two-spinon continuums at $(pi/2,pi/2)$ and $(pi/2,pi)$, respectively. The intermediate phase is characterized by a spectrum with completely deconfined broad continuum, which is attributed to a $Z_{2}$ quantum spin liquid with the aid of a variational-Monte-Carlo analysis.

Download