Do you want to publish a course? Click here

On Integrability of the Geodesic Deviation Equation

206   0   0.0 ( 0 )
 Added by Marco Cariglia Dr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Jacobi equation for geodesic deviation describes finite size effects due to the gravitational tidal forces. In this paper we show how one can integrate the Jacobi equation in any spacetime admitting completely integrable geodesics. Namely, by linearizing the geodesic equation and its conserved charges, we arrive at the invariant Wronskians for the Jacobi system that are linear in the `deviation momenta and thus yield a system of first-order differential equations that can be integrated. The procedure is illustrated on an example of a rotating black hole spacetime described by the Kerr geometry and its higher-dimensional generalizations. A number of related topics, including the phase space formulation of the theory and the derivation of the covariant Hamiltonian for the Jacobi system are also discussed.



rate research

Read More

We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einsteins General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashows Very Special Relativity group ISIM(2). The partially broken Carroll Symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter $b$. We then replace the underlying plane gravitational wave by a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.
We investigate the existence of analytic solutions for the field equations in the Einstein-ae ther theory for a static spherically symmetric spacetime and provide a detailed dynamical system analysis of the field equations. In particular, we investigate if the gravitational field equations in the Einstein-ae ther model in the static spherically symmetric spacetime possesses the Painlev`e property, so that an analytic explicit integration can be performed. We find that analytic solutions can be presented in terms of Laurent expansion only when the matter source consists of a perfect fluid with linear equation of state (EoS) $mu =mu _{0}+left( texttt{h} -1right) p,~texttt{h} >1$. In order to study the field equations we apply the Tolman-Oppenheimer-Volkoff (TOV) approach and other approaches. We find that the relativistic TOV equations are drastically modified in Einstein-ae ther theory, and we explore the physical implications of this modification. We study perfect fluid models with a scalar field with an exponential potential. We discuss all of the equilibrium points and discuss their physical properties.
We point out a misleading treatment in a recent paper published in this Journal [Eur. Phys. J. C (2018)78:106] regarding solutions for the Schr{o}dinger equation with a anharmonic oscillator potential embedded in the background of a cosmic string mapped into biconfluent Heun equation. This fact jeopardizes the thermodynamical properties calculated in this system.
We use factorisations of the local isometry groups arising in 3d gravity for Lorentzian and Euclidean signatures and any value of the cosmological constant to construct associated bicrossproduct quantum groups via semidualisation. In this way we obtain quantum doubles of the Lorentz and rotation groups in 3d, as well as kappa-Poincare algebras whose associated r-matrices have spacelike, timelike and lightlike deformation parameters. We confirm and elaborate the interpretation of semiduality proposed in [13] as the exchange of the cosmological length scale and the Planck mass in the context of 3d quantum gravity. In particular, semiduality gives a simple understanding of why the quantum double of the Lorentz group and the kappa-Poincare algebra with spacelike deformation parameter are both associated to 3d gravity with vanishing cosmological constant, while the kappa-Poincare algebra with a timelike deformation parameter can only be associated to 3d gravity if one takes the Planck mass to be imaginary.
We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein-Hilbert action (with possible minimally coupled matter terms). We find that there is a family of solutions generalising the Levi-Civita connection, characterised by an arbitrary, non-dynamical vector field ${cal A}_mu$. We discuss the mathematical properties and the physical implications of this family and argue that, although there is a clear mathematical difference between these new Palatini connections and the Levi-Civita one, both unparametrised geodesics and the Einstein equation are shared by all of them. Moreover, the Palatini connections are characterised precisely by these two properties, as well as by other properties of its parallel transport. Based on this, we conclude that physical effects associated to the choice of one or the other will not be distinguishable, at least not at the level of solutions or test particle dynamics. We propose a geometrical interpretation for the existence and unobservability of the new solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا