2D superconductivity and vortex dynamics in 1T-MoS2


Abstract in English

Two-dimensional (2D) superconductivity is a fascinating phenomenon packed with rich physics and wide technological application. The vortices and their dynamics arising from classical and quantum fluctuations give rise to Berezinskii-Kosterlitz-Thouless (BKT) transition and 2D Bose metallic phase both of which are of fundamental interest. In 2D, observation of superconductivity and the associated phenomena are sensitive to material disorders. Highly crystalline and inherently 2D van der Waals (vW) systems with carrier concentration and conductivity approaching metallic regime have been a potential platform. The metallic 1T phase of MoS2, a widely explored vW material system controllably, engineered from the semiconducting 2H phase, is a tangible choice. Here, we report the observation of 2D superconductivity accompanied by BKT transition and Bose metallic state in a few-layer 1T-MoS2. Structural characterization shows excellent crystallinity over extended lateral dimension. The electrical characterization confirms the metallic nature down to 4 K and a transition to a superconducting state below 1.2 K with a Tc ~ 920 mK. The 2D nature of the superconducting state is confirmed from the magneto-transport anisotropy against field orientations and the presence of BKT transition. In addition, our sample showcases a manifold increase in the parallel upper-critical-field above the Pauli limit. The inherent two-dimensionality and possibility of scalably engineering semiconducting, metallic and superconducting phases makes MoS2 a potential candidate for hosting monolithic all-two-dimensional hybrid quantum devices.

Download