Strong convergence of numerical discretizations for semilinear stochastic evolution equations driven by multiplicative white noise


Abstract in English

For semilinear stochastic evolution equations whose coefficients are more general than the classical global Lipschitz, we present results on the strong convergence rates of numerical discretizations. The proof of them provides a new approach to strong convergence analysis of numerical discretizations for a large family of second order parabolic stochastic partial differential equations driven by space-time white noises. We apply these results to the stochastic advection-diffusion-reaction equation with a gradient term and multiplicative white noise, and show that the strong convergence rate of a fully discrete scheme constructed by spectral Galerkin approximation and explicit exponential integrator is exactly $frac12$ in space and $frac14$ in time. Compared with the optimal regularity of the mild solution, it indicates that the spetral Galerkin approximation is superconvergent and the convergence rate of the exponential integrator is optimal. Numerical experiments support our theoretical analysis.

Download