No Arabic abstract
We compute the gluon polarization tensor in a thermo-magnetic environment in the strong magnetic field limit at zero and high temperature. The magnetic field effects are introduced using Schwingers proper time method. Thermal effects are computed in the HTL approximation. At zero temperature, we reproduce the well-known result whereby for a non-vanishing quark mass, the polarization tensor reduces to the parallel structure and its coefficient develops an imaginary part corresponding to the threshold for quark-antiquark pair production. This coefficient is infrared finite and simplifies considerably when the quark mass vanishes. Keeping always the field strength as the largest energy scale, in the high temperature regime we analyze two complementary hierarchies of scales: $q^2ll m_f^2ll T^2$ and $m_f^2ll q^2ll T^2$. In the latter, we show that the polarization tensor is infrared finite as $m_f$ goes to zero. In the former, we discuss the thermal corrections to the magnetic Debye mass.
Based on the Dyson-Schwinger equation, we compute the resummed gluon propagator in a holonomous plasma that is described by introducing a constant background field for the vector potential $A_{0}$. Due to the transversality of the holonomous Hard-Thermal-Loop in gluon self-energy, the resummed propagator has a similar Lorentz structure as that in the perturbative Quark-Gluon Plasma where the holonomy vanishes. As for the color structures, since diagonal gluons are mixed in the over-complete double line basis, only the propagators for off-diagonal gluons can be obtained unambiguously. On the other hand, multiplied by a projection operator, the propagators for diagonal gluons, which exhibit a highly non-trivial dependence on the background field, are uniquely determined after summing over the color indices. As an application of these results, we consider the Debye screening effect on the in-medium binding of quarkonium states by analyzing the static limit of the resummed gluon propagator. In general, introducing non-zero holonomy merely amounts to modifications on the perturbative screening mass $m_D$ and the resulting heavy-quark potential, which remains the standard Debye screened form, is always deeper than the screened potential in the perturbative Quark-Gluon Plasma. Therefore, a weaker screening, thus a more tightly bounded quarkonium state can be expected in a holonomous plasma. In addition, both the diagonal and off-diagonal gluons become distinguishable by their modified screening masses ${cal M}_D$ and the temperature dependence of the ratio ${cal M}_D/T$ shows a very similar behavior as that found in lattice simulations.
Due to the rapid longitudinal expansion of the quark-gluon plasma created in heavy-ion collisions, large local-rest-frame momentum-space anisotropies are generated during the systems evolution. These momentum-space anisotropies complicate the modeling of heavy-quarkonium dynamics in the quark-gluon plasma due to the fact that the resulting inter-quark potentials are spatially anisotropic, requiring real-time solution of the 3D Schrodinger equation. Herein, we introduce a method for reducing anisotropic heavy-quark potentials to isotropic ones by introducing an effective screening mass that depends on the quantum numbers $l$ and $m$ of a given state. We demonstrate that, using the resulting effective Debye screening masses, one can solve a 1D Schrodinger equation and reproduce the full 3D results for the energies and binding energies of low-lying heavy-quarkonium bound states to relatively high accuracy. The resulting effective isotropic potential models could provide an efficient method for including momentum-anisotropy effects in open quantum system simulations of heavy-quarkonium dynamics in the quark-gluon plasma.
Building upon our earlier work, we compute a Debye mass of finite-temperature Yang-Mills theory to three-loop order. As an application, we determine a $g^7$ contribution to the thermodynamic pressure of hot QCD.
We analyze the quark mass dependence of the Roper mass to one-loop order in relativistic baryon chiral perturbation theory. The loop integrals are evaluated using infrared regularization which preserves chiral symmetry and establishes a chiral counting scheme. The derived chiral expansion of the Roper mass may prove useful for chiral extrapolations of lattice data. For couplings of natural size the quark mass dependence of the Roper mass is similar to the one of the nucleon.
We compute the magnetic field-induced modifications to the boson self-coupling and the boson-fermion coupling, in the static limit, using an effective model of QCD, the linear sigma model with quarks. The former is computed for arbitrary field strengths as well as using the strong field approximation. The latter is obtained in the strong field limit. The arbitrary field result for the boson self-coupling depends on the ultraviolet renormalization scale and this dependence cannot be removed by a simple vacuum subtraction. Using the strong field result as a guide, we find the appropriate choice for this scale and discuss the physical implications. The boson-fermion coupling depends on the Schwingers phase and we show how this phase can be treated consistently in such a way that the magnetic field induced vertex modification is both gauge invariant and can be written with an explicit factor corresponding to energy-momentum conservation for the external particles. Both couplings show a modest decrease with the field strength.