In this note we show a comparison principle for nonlinear heat Rockland operators on graded groups. We give a simple proof for it using purely algebraic relations. As an application of the established comparison principle we prove the global in $t$-boundedness of solutions for a class of nonlinear equations for the heat $p$-sub-Laplacian on stratified groups.
Soliton theory and the theory of Hankel (and Toeplitz) operators have stayed essentially hermetic to each other. This paper is concerned with linking together these two very active and extremely large theories. On the prototypical example of the Cauchy problem for the Korteweg-de Vries (KdV) equation we demonstrate the power of the language of Hankel operators in which symbols are conveniently represented in terms of the scattering data for the Schrodinger operator associated with the initial data for the KdV equation. This approach yields short-cuts to already known results as well as to a variety of new ones (e.g. wellposedness beyond standard assumptions on the initial data) which are achieved by employing some subtle results for Hankel operators.
We use the theory of functions of noncommuting operators (noncommutative analysis) to solve an asymptotic problem for a partial differential equation and show how, starting from general constructions and operator formulas that seem to be rather abstract from the viewpoint of differential equations, one can end up with very specific, easy-to-evaluate expressions for the solution, useful, e.g., in the tsunami wave problem.
We study strong ratio limit properties of the quotients of the heat kernels of subcritical and critical operators which are defined on a noncompact Riemannian manifold.
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspace of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.
We review previous work on spectral flow in connection with certain self-adjoint model operators ${A(t)}_{tin mathbb{R}}$ on a Hilbert space $mathcal{H}$, joining endpoints $A_pm$, and the index of the operator $D_{A}^{}= (d/d t) + A$ acting in $L^2(mathbb{R}; mathcal{H})$, where $A$ denotes the operator of multiplication $(A f)(t) = A(t)f(t)$. In this article we review what is known when these operators have some essential spectrum and describe some new results in terms of associated spectral shift functions. We are especially interested in extensions to non-Fredholm situations, replacing the Fredholm index by the Witten index, and use a particular $(1+1)$-dimensional model setup to illustrate our approach based on spectral shift functions.