Do you want to publish a course? Click here

Investigating the scalar sector of left-right symmetric models with leptonic probes

147   0   0.0 ( 0 )
 Added by Benjamin Fuks
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the potential collider signatures of singly-charged and doubly-charged Higgs bosons such as those arising in minimal left-right symmetric models. Focusing on multileptonic probes in the context of the high-luminosity run of the Large Hadron Collider, we separately assess the advantages of the four-leptonic and trileptonic final states for a representative benchmark setup designed by considering a large set of experimental constraints. Our study establishes possibilities of identifying singly-charged and doubly-charged scalars at the Large Hadron Collider with a large significance, for luminosity goals expected to be reached during the high-luminosity phase of the Large Hadron Collider. We generalise our results and demonstrate that existing limits can in principle be pushed much further in the heavy mass regime.



rate research

Read More

In a previous paper we study the neutrino-electron scattering in the framework of a left-right symmetric model (LRSM). Constraints on the LRSM parameters $M_{Z_{2}}$ and $phi$ were obtained. Based on new measurements we present an update to these constraints and also include in the calculation the radiative corrections.
Left-Right symmetric model (LRSM) has been an attractive extension of the Standard Model (SM) which can address the origin of parity violation in the SM electroweak (EW) interactions, generate tiny neutrino masses, accommodate dark matter (DM) candidates and provide a natural framework for baryogenesis through leptogenesis. In this work we utilize the minimal LRSM to study the recently reported DAMPE results of cosmic $e^+e^-$ spectrum which exhibits a tentative peak around 1.4 TeV, while satisfying the current neutrino data. We propose to explain the DAMPE peak with a complex scalar DM $chi$ in two scenarios: 1) $chichi^* to H_1^{++}H_1^{--} to ell_i^+ell_i^+ell_j^-ell_j^-$; 2) $chichi^* to H_{k}^{++}H_{k}^{--} to ell_i^+ell_i^+ell_j^-ell_j^-$ accompanied by $chichi^* to H_1^+ H_1^- to ell_i^+ u_{ell_i} ell_j^- u_{ell_j}$ with $ell_{i,j}=e,mu,tau$ and $k=1,2$. We fit the theoretical prediction on $e^+e^-$ spectrum to relevant experimental data to determine the scalar mass spectrum favored by the DAMPE excess. We also consider various constraints from theoretical principles, collider experiments as well as DM relic density and direct search experiments. We find that there are ample parameter space which can interpret the DAMPE data while passing the constraints. Our explanations, on the other hand, usually imply the existence of other new physics at the energy scale ranging from $10^7 {rm GeV}$ to $10^{11} {rm GeV}$. Collider tests of our explanations are also discussed.
We present an implementation of the manifest left-right symmetric model in FeynRules. The different aspects of the model are briefly described alongside the corresponding elements of the model file. The model file is validated and can be easily translated to matrix element generators such as MadGraph5_aMC@NLO, CalcHEP, Sherpa, etc. The implementation of the left-right symmetric model is a useful step for studying new physics signals with the data generated at the LHC.
We consider baryon-number-violating nucleon and dinucleon decays to leptonic final states in the context of a left-right symmetric (LRS) model with large extra dimensions. Specifically, we study (a) nucleon to trilepton decays with $Delta B=-1$ and $Delta L=-3$, and (b) dinucleon to dilepton decays with $Delta B=-2$ and $Delta L=-2$. In the LRS model, $B-L$ is gauged and is spontaneously broken by a Higgs vacuum expectation value $v_R$, which characterizes the scale at which processes violating $B-L$ occur. We show that together with the lower bound on $v_R$ from experimental limits on $n$-$bar n$ oscillations, constraints from searches for other nucleon decay modes imply sufficient suppression of these nucleon to trilepton and dinucleon to dilepton decay modes in this model to agree with experimental bounds.
75 - K.S. Babu , Anil Thapa 2020
We develop a minimal left-right symmetric model based on the gauge group $SU(3)_C otimes SU(2)_L otimes SU(2)_R otimes U(1)_{B-L}$ wherein the Higgs triplets conventionally employed for symmetry breaking are replaced by Higgs doublets. Majorana masses for the right-handed neutrinos $( u_R$) are induced via two-loop diagrams involving a charged scalar field $eta^+$. This setup is shown to provide excellent fits to neutrino oscillation data via the seesaw mechanism for the entire range of the $W_R^pm$ mass, from TeV to the GUT scale. When the $W_R^pm$ mass is at the TeV scale, the $ u_R$ masses turn out to be in the MeV range. We analyze constraints from low energy experiments, early universe cosmology and from supernova 1987a on such a scenario and show its consistency. We also study collider implications of a relatively light $eta^+$ scalar through its decay into multi-lepton final states and derive a lower limit of 390 GeV on its mass from the LHC, which can be improved to 555 GeV in its high luminosity run.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا