Do you want to publish a course? Click here

Phonon Quantum Nondemolition Measurements in Nonlinearly Coupled Optomechanical Cavities

416   0   0.0 ( 0 )
 Added by Bradley Hauer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical resonators. Here, we investigate these QND measurements for an optomechanical system whereby quadratic coupling arises due to shared symmetries between a single optical resonance and a mechanical mode. We establish a relaxed limit on the amount of linear coupling that can exist in this type of system while still allowing for a QND measurement of Fock states. This new condition enables optomechanical QND measurements, which can be used to probe the decoherence of mesoscopic mechanical Fock states, providing an experimental testbed for quantum collapse theories.



rate research

Read More

Quantum teleportation, the faithful transfer of an unknown input state onto a remote quantum system, is a key component in long distance quantum communication protocols and distributed quantum computing. At the same time, high frequency nano-optomechanical systems hold great promise as nodes in a future quantum network, operating on-chip at low-loss optical telecom wavelengths with long mechanical lifetimes. Recent demonstrations include entanglement between two resonators, a quantum memory and microwave to optics transduction. Despite these successes, quantum teleportation of an optical input state onto a long-lived optomechanical memory is an outstanding challenge. Here we demonstrate quantum teleportation of a polarization-encoded optical input state onto the joint state of a pair of nanomechanical resonators. Our protocol also allows for the first time to store and retrieve an arbitrary qubit state onto a dual-rail encoded optomechanical quantum memory. This work demonstrates the full functionality of a single quantum repeater node, and presents a key milestone towards applications of optomechanical systems as quantum network nodes.
Optomechanical structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by phonons, optomechanical structures could be used as interfaces to photons and electrons thanks to their excellent coupling efficiency. Among the components required for phononic circuits, such structures could be used to create coherent phonon sources and detectors. Complex functions other than emission or detection remain challenging and addressing a single structure in a full network proves a formidable challenge. Here, we propose and demonstrate a way to modulate the coherent emission from optomechanical crystals by external optical pumping, effectively creating a phonon switch working at ambient conditions of pressure and temperature and the working speed of which (5 MHz) is only limited by the mechanical motion of the optomechanical structure. We additionally demonstrate two other switching schemes: harmonic switching in which the mechanical mode remains active but different harmonics of the optical force are used, and switching to- and from the chaotic regime. Furthermore, the method presented here allows to select any single structure without affecting its surroundings, which is an important step towards freely controllable networks of optomechanical phonon emitters.
We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e. generate a state $|psi_perp>$ from $|psi>$ where $<psi|psi_perp> = 0$, which does not require significant a priori knowledge of the input state. We illustrate how to achieve orthogonalization using the Jaynes-Cummings or beam-splitter interaction, which permits realization in a number of systems. Furthermore, we demonstrate how to orthogonalize the motional state of a mechanical oscillator in a cavity optomechanics context by developing a set of coherent phonon level operations. As the mechanical oscillator is a stationary system such operations can be performed at multiple times, providing considerable versatility for quantum state engineering applications. Utilizing this, we additionally introduce a method how to transform any known pure state into any desired target state.
240 - Ke Liu , Lei Tan , C.-H Lv 2014
The features of superfluid-Mott insulator phase transition in the array of dissipative nonlinear cavities are analyzed. We show analytically that the coupling to the bath can be reduced to renormalizing the eigenmodes of atom-cavity system. This gives rise to a localizing effect and drives the system into mixed states. For the superfluid state, a dynamical instability will lead to a sweeping to a localized state of photons. For the Mott state, a dissipation-induced fluctuation will suppress the restoring of long-range phase coherence driven by interaction.
Utilizing the tools of quantum optics to prepare and manipulate quantum states of motion of a mechanical resonator is currently one of the most promising routes to explore non-classicality at a macroscopic scale. An important quantum optomechanical tool yet to be experimentally demonstrated is the ability to perform complete quantum state reconstruction. Here, after providing a brief introduction to quantum states in phase space, we review and contrast the current proposals for state reconstruction of mechanical motional states and discuss experimental progress. Furthermore, we show that mechanical quadrature tomography using back-action-evading interactions gives an $s$-parameterized Wigner function where the numerical parameter $s$ is directly related to the optomechanical measurement strength. We also discuss the effects of classical noise in the optical probe for both state reconstruction and state preparation by measurement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا