No Arabic abstract
We study fixed point properties of the automorphism group of the universal Coxeter group Aut$(W_n)$. In particular, we prove that whenever Aut$(W_n)$ acts by isometries on complete $d$-dimensional CAT$(0)$ space with $d<lfloorfrac{n}{2}rfloor$, then it must fix a point. We also prove that Aut$(W_n)$ does not have Kazhdans property (T). Further, strong restrictions are obtained on homomorphisms of Aut$(W_n)$ to groups that do not contain a copy of Sym(n).
We prove that the automorphism group of the braid group on four strands acts faithfully and geometrically on a CAT(0) 2-complex. This implies that the automorphism group of the free group of rank two acts faithfully and geometrically on a CAT(0) 2-complex, in contrast to the situation for rank three and above.
The structure of the automorphism group of the sandwich semigroup IS_n is described in terms of standard group constructions.
We describe an algorithm to find the virtual cohomological dimension of the automorphism group of a right-angled Artin group. The algorithm works in the relative setting; in particular it also applies to untwisted automorphism groups and basis-conjugating automorphism groups. The main new tool is the construction of free abelian subgroups of certain Fouxe-Rabinovitch groups of rank equal to their virtual cohomological dimension, generalizing a result of Meucci in the setting of free groups.
We show that the countable universal homogeneous meet-tree has a generic automorphism, but it does not have a generic pair of automorphisms.
Let $G$ be a finite group admitting a coprime automorphism $phi$ of order $n$. Denote by $G_{phi}$ the centralizer of $phi$ in $G$ and by $G_{-phi}$ the set ${ x^{-1}x^{phi}; xin G}$. We prove the following results. 1. If every element from $G_{phi}cup G_{-phi}$ is contained in a $phi$-invariant subgroup of exponent dividing $e$, then the exponent of $G$ is $(e,n)$-bounded. 2. Suppose that $G_{phi}$ is nilpotent of class $c$. If $x^{e}=1$ for each $x in G_{-phi}$ and any two elements of $G_{-phi}$ are contained in a $phi$-invariant soluble subgroup of derived length $d$, then the exponent of $[G,phi]$ is bounded in terms of $c,d,e,n$.