Do you want to publish a course? Click here

The automorphism group of the universal Coxeter group

67   0   0.0 ( 0 )
 Added by Olga Varghese
 Publication date 2018
  fields
and research's language is English
 Authors Olga Varghese




Ask ChatGPT about the research

We study fixed point properties of the automorphism group of the universal Coxeter group Aut$(W_n)$. In particular, we prove that whenever Aut$(W_n)$ acts by isometries on complete $d$-dimensional CAT$(0)$ space with $d<lfloorfrac{n}{2}rfloor$, then it must fix a point. We also prove that Aut$(W_n)$ does not have Kazhdans property (T). Further, strong restrictions are obtained on homomorphisms of Aut$(W_n)$ to groups that do not contain a copy of Sym(n).



rate research

Read More

We prove that the automorphism group of the braid group on four strands acts faithfully and geometrically on a CAT(0) 2-complex. This implies that the automorphism group of the free group of rank two acts faithfully and geometrically on a CAT(0) 2-complex, in contrast to the situation for rank three and above.
The structure of the automorphism group of the sandwich semigroup IS_n is described in terms of standard group constructions.
We describe an algorithm to find the virtual cohomological dimension of the automorphism group of a right-angled Artin group. The algorithm works in the relative setting; in particular it also applies to untwisted automorphism groups and basis-conjugating automorphism groups. The main new tool is the construction of free abelian subgroups of certain Fouxe-Rabinovitch groups of rank equal to their virtual cohomological dimension, generalizing a result of Meucci in the setting of free groups.
We show that the countable universal homogeneous meet-tree has a generic automorphism, but it does not have a generic pair of automorphisms.
Let $G$ be a finite group admitting a coprime automorphism $phi$ of order $n$. Denote by $G_{phi}$ the centralizer of $phi$ in $G$ and by $G_{-phi}$ the set ${ x^{-1}x^{phi}; xin G}$. We prove the following results. 1. If every element from $G_{phi}cup G_{-phi}$ is contained in a $phi$-invariant subgroup of exponent dividing $e$, then the exponent of $G$ is $(e,n)$-bounded. 2. Suppose that $G_{phi}$ is nilpotent of class $c$. If $x^{e}=1$ for each $x in G_{-phi}$ and any two elements of $G_{-phi}$ are contained in a $phi$-invariant soluble subgroup of derived length $d$, then the exponent of $[G,phi]$ is bounded in terms of $c,d,e,n$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا