Do you want to publish a course? Click here

Transient flows and reorientations of large-scale convection in a cubic cell

142   0   0.0 ( 0 )
 Added by Rodion Stepanov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transient processes of a turbulent large-scale convective circulation (LSC) in a cubic cell are investigated using large-eddy simulations for Rayleigh number $Ray=10^8$ and Prandtl number $Pran=0.7$. For the first time, we have explicitly shown that LSC is accompanied by large-scale azimuthal flows with non-zero total angular momentum. It is also shown that solid-body rotation of the entire fluid is not realized. It is found that correlation between rotation of LSC plane and the mean azimuthal motion is high during quasiperiodic oscillations of LSC near the diagonal plane and relatively weak during LSC reorientations. We propose a new plausible scenario for the reorientations of the LSC in a cube that does not involve a mean azimuthal flow. Instead of a single-roll, we introduce the superposition of a pair of large-scale orthogonal quasi-two-dimensional (Q2D) rolls and the reorientation of the LSC occurs as a result of the cessation of one of the Q2D rolls. This scenario is consistent with all known experimental and numerical data.



rate research

Read More

In a range of physical systems, the first instability in Rayleigh-Bernard convection between nearly thermally insulating horizontal plates is large scale. This holds for thermal convection of fluids saturating porous media. Large-scale thermal convection in a horizontal layer is governed by remarkably similar equations both in the presence of a porous matrix and without it, with only one additional term for the latter case, which, however, vanishes under certain conditions (e.g., two-dimensional flows or infinite Prandtl number). We provide a rigorous derivation of long-wavelength equations for a porous layer with inhomogeneous heating and possible pumping.
144 - J. von Hardenberg 2015
We simulate three-dimensional, horizontally periodic Rayleigh-Benard convection between free-slip horizontal plates, rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.
In turbulent Rayleigh-Benard convection, a large-scale circulation (LSC) develops in a nearly vertical plane, and is maintained by rising and falling plumes detaching from the unstable thermal boundary layers. Rare but large fluctuations in the LSC amplitude can lead to extinction of the LSC (a cessation event), followed by the re-emergence of another LSC with a different (random) azimuthal orientation. We extend previous models of the LSC dynamics to include momentum and thermal diffusion in the azimuthal plane, and calculate the tails of the probability distributions of both the amplitude and azimuthal angle. Our analytical results are in very good agreement with experimental data.
We examine long-time properties of the ideal dynamics of three--dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases the results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, even though in the dissipative rotating case anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations, and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two-dimensionalization of the flow undergoing strong rotation as advocated by several authors.
193 - Paul Manneville 2015
A system of simplified equations is proposed to govern the feedback interactions of large-scale flows present in laminar-turbulent patterns of transitional wall-bounded flows, with small-scale Reynolds stresses generated by the self-sustainment process of turbulence itself modeled using an extension of Waleffes approach (Phys. Fluids 9 (1997) 883-900), the detailed expression of which is displayed as an annex to the main text.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا