No Arabic abstract
Long wavelength descriptions of a half-filled lowest Landau level ($ u = 1/2$) must be consistent with the experimental observation of particle-hole (PH) symmetry. The traditional description of the $ u=1/2$ state pioneered by Halperin, Lee and Read (HLR) naively appears to break PH symmetry. However, recent studies have shown that the HLR theory with weak quenched disorder can exhibit an emergent PH symmetry. We find that such inhomogeneous configurations of the $ u=1/2$ fluid, when described by HLR mean-field theory, are tuned to a topological phase transition between an integer quantum Hall state and an insulator of composite fermions with a dc Hall conductivity $sigma_{xy}^{rm (cf)} = - {1 over 2} {e^2 over h}$. Our observations help explain why the HLR theory exhibits PH symmetric dc response.
We present a lattice model of fermions with $N$ flavors and random interactions which describes a Planckian metal at low temperatures, $T rightarrow 0$, in the solvable limit of large $N$. We begin with quasiparticles around a Fermi surface with effective mass $m^ast$, and then include random interactions which lead to fermion spectral functions with frequency scaling with $k_B T/hbar$. The resistivity, $rho$, obeys the Drude formula $rho = m^ast/(n e^2 tau_{textrm{tr}})$, where $n$ is the density of fermions, and the transport scattering rate is $1/tau_{textrm{tr}} = f , k_B T/hbar$; we find $f$ of order unity, and essentially independent of the strength and form of the interactions. The random interactions are a generalization of the Sachdev-Ye-Kitaev models; it is assumed that processes non-resonant in the bare quasiparticle energies only renormalize $m^ast$, while resonant processes are shown to produce the Planckian behavior.
We numerically assess model wave functions for the recently proposed particle-hole-symmetric Pfaffian (`PH-Pfaffian) topological order, a phase consistent with the recently reported thermal Hall conductance [Banerjee et al., Nature 559, 205 (2018)] at the ever enigmatic $ u=5/2$ quantum-Hall plateau. We find that the most natural Moore-Read-inspired trial state for the PH-Pfaffian, when projected into the lowest Landau level, exhibits a remarkable numerical similarity on accessible system sizes with the corresponding (compressible) composite Fermi liquid. Consequently, this PH-Pfaffian trial state performs reasonably well energetically in the half-filled lowest Landau level, but is likely not a good starting point for understanding the $ u=5/2$ ground state. Our results suggest that the PH-Pfaffian model wave function either encodes anomalously weak $p$-wave pairing of composite fermions or fails to represent a gapped, incompressible phase altogether.
This piece has been written for local, educational purposes. If you are like me searching for the right words to explain your fascination with high Tc superconductivity to the outside world, you might find something useful in this text.
Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal $pm e^2/2h$ at half-filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half-filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field, the oscillations occur symmetrically as the electron density is varied about half-filling. We find an approximate sum rule obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long wavelength physics.
We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.