Do you want to publish a course? Click here

Lectures notes on compact Riemann surfaces

101   0   0.0 ( 0 )
 Added by Bertrand Eynard
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is an introduction to the geometry of compact Riemann surfaces, largely following the books Farkas-Kra, Fay, Mumford Tata lectures. 1) Defining Riemann surfaces with atlases of charts, and as locus of solutions of algebraic equations. 2) Space of meromorphic functions and forms, we classify them with the Newton polygon. 3) Abel map, the Jacobian and Theta functions. 4) The Riemann--Roch theorem that computes the dimension of spaces of functions and forms with given orders of poles and zeros. 5) The moduli space of Riemann surfaces, with its combinatorial representation as Strebel graphs, and also with the uniformization theorem that maps Riemann surfaces to hyperbolic surfaces. 6) An application of Riemann surfaces to integrable systems, more precisely finding sections of an eigenvector bundle over a Riemann surface, which is known as the algebraic reconstruction method in integrable systems, and we mention how it is related to Baker-Akhiezer functions and Tau functions.



rate research

Read More

105 - J. Frauendiener , C. Klein 2015
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
211 - Keith A. Earle 2010
The Feynman checkerboard problem is an interesting path integral approach to the Dirac equation in `1+1 dimensions. I compare two approaches reported in the literature and show how they may be reconciled. Some physical insights may be gleaned from this approach.
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
In this paper using a Clifford bundle formalism we examine (a): the strong conditions for existence of conservation laws involving only the energy-momentum and angular momentum of the matter fields on a general Riemann-Cartan spacetime and also in the particular cases of Lorentzian and teleparallel spacetimes and (b): the conditions for the existence of conservation laws of energy-momentum and angular momentum for the matter and gravitational fields when this latter concept can be rigorously defined. We examine in details some misleading and even erroneous and often quoted statements concerning the issues of the conservation laws in General Relativity and Riemann-Cartan (including the particular case of the teleparallel one) theories.
We present analytical implementation of conformal field theory on a compact Riemann surface. We consider statistical fields constructed from background charge modifications of the Gaussian free field and derive Ward identities which represent the Lie derivative operators in terms of the Virasoro fields and the puncture operators associated with the background charges. As applications, we derive Eguchi-Ooguris version of Wards equations and certain types of BPZ equations on a torus.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا