No Arabic abstract
We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope and the Large Area X-Ray Proportional Counter instrument onboard the Indian space telescope $AstroSat$ and archival observations from $Swift$. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break, i.e., the index becomes more negative below a characteristic break-timescale. Galactic black hole X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective black hole mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk-jet connection. However, evidence of such link have been scarce and indirect. Mrk 421 is a BL Lac object which has a prominent jet pointed towards us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale are translating into the jet, where the X-rays are produced.
Blazar emission is dominated by non-thermal radiation from a relativistic jet pointing toward us, therefore undergoing Doppler beaming. This is responsible for flux enhancement and contraction of the variability time scales, so that most blazars appear as luminous sources characterized by noticeable and fast flux changes at all frequencies. The mechanisms producing their unpredictable variability are debated and include injection, acceleration and cooling of particles, with possible intervention of shock waves or turbulence. Changes in the viewing angle of the emitting knots or jet regions have also been suggested to explain flaring events or specific properties such as intraday variability, quasi-periodicities, or the delay of radio flux variations relative to optical changes. However, such a geometric interpretation has not been universally accepted because alternative explanations based on changes of physical conditions can also work in many cases. Here we report the results of optical-to-radio monitoring of the blazar CTA 102 by the Whole Earth Blazar Telescope Collaboration and show that the observed long-term flux and spectral variability is best explained by an inhomogeneous, curved jet that undergoes orientation changes. We propose that magnetohydrodynamic instabilities or rotation of a twisted jet cause different jet regions to change their orientation and hence their relative Doppler factors. In particular, the recent extreme optical outburst (six magnitudes) occurred when the corresponding jet emitting region acquired a minimum viewing angle.
We study power density spectra (PDS) of X-ray flux variability in binary systems where the accretion flow is truncated by the magnetosphere. PDS of accreting X-ray pulsars where the neutron star is close to the corotation with the accretion disk at the magnetospheric boundary, have a distinct break/cutoff at the neutron star spin frequency. This break can naturally be explained in the perturbation propagation model, which assumes that at any given radius in the accretion disk stochastic perturbations are introduced to the flow with frequencies characteristic for this radius. These perturbations are then advected to the region of main energy release leading to a self-similar variability of X-ray flux P~f^{-1...-1.5}. The break in the PDS is then a natural manifestation of the transition from the disk to magnetospheric flow at the frequency characteristic for the accretion disk truncation radius (magnetospheric radius). The proximity of the PDS break frequency to the spin frequency in corotating pulsars strongly suggests that the typical variability time scale in accretion disks is close to the Keplerian one. In transient accreting X-ray pulsars characterized by large variations of the mass accretion rate during outbursts, the PDS break frequency follows the variations of the X-ray flux, reflecting the change of the magnetosphere size with the accretion rate. Above the break frequency the PDS steepens to ~f^{-2} law which holds over a broad frequency range. These results suggest that strong f^{-1...-1.5} aperiodic variability which is ubiquitous in accretion disks is not characteristic for magnetospheric flows.
Six XMM-Newton observations of the bright narrow line Seyfert 1, Mrk 110, from 2004-2020, are presented. The analysis of the grating spectra from the Reflection Grating Spectrometer (RGS) reveals a broad component of the He-like Oxygen (OVII) line, with a full width at half maximum (FWHM) of $15900pm1800$ km s$^{-1}$ measured in the mean spectrum. The broad OVII line in all six observations can be modelled with a face-on accretion disk profile, where from these profiles the inner radius of the line emission is inferred to lie between about 20-100 gravitational radii from the black hole. The derived inclination angle, of about 10 degrees, is consistent with studies of the optical Broad Line Region in Mrk 110. The line also appears variable and for the first time, a significant correlation is measured between the OVII flux and the continuum flux from both the RGS and EPIC-pn data. Thus the line responds to the continuum, being brightest when the continuum flux is highest, similar to the reported behaviour of the optical HeII line. The density of the line emitting gas is estimated to be $n_{rm e}sim10^{14}$ cm$^{-3}$, consistent with an origin in the accretion disk.
We compare the microlensing-based continuum emission region size measurements in a sample of 15 gravitationally lensed quasars with estimates of luminosity-based thin disk sizes to constrain the temperature profile of the quasar continuum accretion region. If we adopt the standard thin disk model, we find a significant discrepancy between sizes estimated using the luminosity and those measured by microlensing of $log(r_{L}/r_{mu})=-0.57pm0.08,text{dex}$. If quasar continuum sources are simple, optically thick accretion disks with a generalized temperature profile $T(r) propto r^{-beta}$, the discrepancy between the microlensing measurements and the luminosity-based size estimates can be resolved by a temperature profile slope $0.37 < beta < 0.56$ at $1,sigma$ confidence. This is shallower than the standard thin disk model ($beta=0.75$) at $3,sigma$ significance. We consider alternate accretion disk models that could produce such a temperature profile and reproduce the empirical continuum size scaling with black hole mass, including disk winds or disks with non-blackbody atmospheres.
In 2015 July 29 - September 1 the satellite XMM-Newton pointed at the BL Lac object PG 1553+133 six times, collecting data for 218 hours. During one of these epochs, simultaneous observations by the Swift satellite were requested to compare the results of the X-ray and optical-UV instruments. Optical, near-infrared and radio monitoring was carried out by the Whole Earth Blazar Telescope (WEBT) collaboration for the whole observing season. We here present the results of the analysis of all these data, together with an investigation of the source photometric and polarimetric behaviour over the last three years. The 2015 EPIC spectra show slight curvature and the corresponding light curves display fast X-ray variability with a time scale of the order of 1 hour. In contrast to previous results, during the brightest X-ray states detected in 2015 the simple log-parabolic model that best-fits the XMM-Newton data also reproduces reasonably well the whole synchrotron bump, suggesting a peak in the near-UV band. We found evidence of a wide rotation of the polarization angle in 2014, when the polarization degree was variable, but the flux remained almost constant. This is difficult to interpret with deterministic jet emission models, while it can be easily reproduced by assuming some turbulence of the magnetic field.