Do you want to publish a course? Click here

Improved Worst-Case Deterministic Parallel Dynamic Minimum Spanning Forest

178   0   0.0 ( 0 )
 Added by Tsvi Kopelowitz
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper gives a new deterministic algorithm for the dynamic Minimum Spanning Forest (MSF) problem in the EREW PRAM model, where the goal is to maintain a MSF of a weighted graph with $n$ vertices and $m$ edges while supporting edge insertions and deletions. We show that one can solve the dynamic MSF problem using $O(sqrt n)$ processors and $O(log n)$ worst-case update time, for a total of $O(sqrt n log n)$ work. This improves on the work of Ferragina [IPPS 1995] which costs $O(log n)$ worst-case update time and $O(n^{2/3} log{frac{m}{n}})$ work.



rate research

Read More

123 - Monika Henzinger , Pan Peng 2020
We give two fully dynamic algorithms that maintain a $(1+varepsilon)$-approximation of the weight $M$ of the minimum spanning forest of an $n$-node graph $G$ with edges weights in $[1,W]$, for any $varepsilon>0$. (1) Our deterministic algorithm takes $O({W^2 log W}/{varepsilon^3})$ worst-case update time, which is $O(1)$ if both $W$ and $varepsilon$ are constants. Note that there is a lower bound by Patrascu and Demaine (SIAM J. Comput. 2006) shows that it takes $Omega(log n)$ time per operation to maintain the exact weight of the MSF that holds even in the unweighted case, i.e. for $W=1$. We further show that any deterministic data structure that dynamically maintains the $(1+varepsilon)$-approximate weight of the MSF requires super constant time per operation, if $Wgeq (log n)^{omega_n(1)}$. (2) Our randomized (Monte-Carlo style) algorithm works with high probability and runs in worst-case $O(frac{1}{varepsilon^4}log^3(frac{1}{varepsilon}))$ update time if $W$ is not too large, more specifically, if $W= O({(m^*)^{1/6}}/{log n})$, where $m^*$ is the minimum number of edges in the graph throughout all the updates. It works even against an adaptive adversary. We complement this result by showing that for any constant $varepsilon,alpha>0$ and $W=n^{alpha}$, any (randomized) data structure that dynamically maintains the weight of the MSF of a graph $G$ with edge weights in $[1,W]$ and $W = Omega(varepsilon m^*)$ within a multiplicative factor of $(1+varepsilon)$ takes $Omega(log n)$ time per operation.
The minimum-weight $2$-edge-connected spanning subgraph (2-ECSS) problem is a natural generalization of the well-studied minimum-weight spanning tree (MST) problem, and it has received considerable attention in the area of network design. The latter problem asks for a minimum-weight subgraph with an edge connectivity of $1$ between each pair of vertices while the former strengthens this edge-connectivity requirement to $2$. Despite this resemblance, the 2-ECSS problem is considerably more complex than MST. While MST admits a linear-time centralized exact algorithm, 2-ECSS is NP-hard and the best known centralized approximation algorithm for it (that runs in polynomial time) gives a $2$-approximation. In this paper, we give a deterministic distributed algorithm with round complexity of $widetilde{O}(D+sqrt{n})$ that computes a $(5+epsilon)$-approximation of 2-ECSS, for any constant $epsilon>0$. Up to logarithmic factors, this complexity matches the $widetilde{Omega}(D+sqrt{n})$ lower bound that can be derived from Das Sarma et al. [STOC11], as shown by Censor-Hillel and Dory [OPODIS17]. Our result is the first distributed constant approximation for 2-ECSS in the nearly optimal time and it improves on a recent randomized algorithm of Dory [PODC18], which achieved an $O(log n)$-approximation in $widetilde{O}(D+sqrt{n})$ rounds. We also present an alternative algorithm for $O(log n)$-approximation, whose round complexity is linear in the low-congestion shortcut parameter of the network, following a framework introduced by Ghaffari and Haeupler [SODA16]. This algorithm has round complexity $widetilde{O}(D+sqrt{n})$ in worst-case networks but it provably runs much faster in many well-behaved graph families of interest. For instance, it runs in $widetilde{O}(D)$ time in planar networks and those with bounded genus, bounded path-width or bounded tree-width.
In the dynamic minimum set cover problem, a challenge is to minimize the update time while guaranteeing close to the optimal $min(O(log n), f)$ approximation factor. (Throughout, $m$, $n$, $f$, and $C$ are parameters denoting the maximum number of sets, number of elements, frequency, and the cost range.) In the high-frequency range, when $f=Omega(log n)$, this was achieved by a deterministic $O(log n)$-approximation algorithm with $O(f log n)$ amortized update time [Gupta et al. STOC17]. In the low-frequency range, the line of work by Gupta et al. [STOC17], Abboud et al. [STOC19], and Bhattacharya et al. [ICALP15, IPCO17, FOCS19] led to a deterministic $(1+epsilon)f$-approximation algorithm with $O(f log (Cn)/epsilon^2)$ amortized update time. In this paper we improve the latter update time and provide the first bounds that subsume (and sometimes improve) the state-of-the-art dynamic vertex cover algorithms. We obtain: 1. $(1+epsilon)f$-approximation ratio in $O(flog^2 (Cn)/epsilon^3)$ worst-case update time: No non-trivial worst-case update time was previously known for dynamic set cover. Our bound subsumes and improves by a logarithmic factor the $O(log^3 n/text{poly}(epsilon))$ worst-case update time for unweighted dynamic vertex cover (i.e., when $f=2$ and $C=1$) by Bhattacharya et al. [SODA17]. 2. $(1+epsilon)f$-approximation ratio in $Oleft((f^2/epsilon^3)+(f/epsilon^2) log Cright)$ amortized update time: This result improves the previous $O(f log (Cn)/epsilon^2)$ update time bound for most values of $f$ in the low-frequency range, i.e. whenever $f=o(log n)$. It is the first that is independent of $m$ and $n$. It subsumes the constant amortized update time of Bhattacharya and Kulkarni [SODA19] for unweighted dynamic vertex cover (i.e., when $f = 2$ and $C = 1$).
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present two new distributed approximation algorithms for the MDST problem. Our first result is a randomized distributed algorithm that constructs a spanning tree of maximum degree $hat d = O(dlog{n})$. It requires $O((D + sqrt{n}) log^2 n)$ rounds (w.h.p.), where $D$ is the graph diameter, which matches (within log factors) the optimal round complexity for the related minimum spanning tree problem. Our second result refines this approximation factor by constructing a tree with maximum degree $hat d = O(d + log{n})$, though at the cost of additional polylogarithmic factors in the round complexity. Although efficient approximation algorithms for the MDST problem have been known in the sequential setting since the 1990s, our results are first efficient distributed solutions for this problem.
Given a directed weighted graph $G=(V,E)$ undergoing vertex insertions emph{and} deletions, the All-Pairs Shortest Paths (APSP) problem asks to maintain a data structure that processes updates efficiently and returns after each update the distance matrix to the current version of $G$. In two breakthrough results, Italiano and Demetrescu [STOC 03] presented an algorithm that requires $tilde{O}(n^2)$ emph{amortized} update time, and Thorup showed in [STOC 05] that emph{worst-case} update time $tilde{O}(n^{2+3/4})$ can be achieved. In this article, we make substantial progress on the problem. We present the following new results: (1) We present the first deterministic data structure that breaks the $tilde{O}(n^{2+3/4})$ worst-case update time bound by Thorup which has been standing for almost 15 years. We improve the worst-case update time to $tilde{O}(n^{2+5/7}) = tilde{O}(n^{2.71..})$ and to $tilde{O}(n^{2+3/5}) = tilde{O}(n^{2.6})$ for unweighted graphs. (2) We present a simple deterministic algorithm with $tilde{O}(n^{2+3/4})$ worst-case update time ($tilde{O}(n^{2+2/3})$ for unweighted graphs), and a simple Las-Vegas algorithm with worst-case update time $tilde{O}(n^{2+2/3})$ ($tilde{O}(n^{2 + 1/2})$ for unweighted graphs) that works against a non-oblivious adversary. Both data structures require space $tilde{O}(n^2)$. These are the first exact dynamic algorithms with truly-subcubic update time emph{and} space usage. This makes significant progress on an open question posed in multiple articles [COCOON01, STOC 03, ICALP04, Encyclopedia of Algorithms 08] and is critical to algorithms in practice [TALG 06] where large space usage is prohibitive. Moreover, they match the worst-case update time of the best previous algorithms and the second algorithm improves upon a Monte-Carlo algorithm in a weaker adversary model with the same running time [SODA 17].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا