Do you want to publish a course? Click here

Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera

80   0   0.0 ( 0 )
 Added by Jun Kataoka Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12^C^* or 11^B^* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)_2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12^C(p,p)12^C^*.



rate research

Read More

X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly-sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over a FoV of up to 2$pi$ sr thanks to its excellent imaging based on a well-defined point spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 $pm$ 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30$^circ$ and was not degraded compared to the 0.58 $pm$ 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. (2015) would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10$^{7}$ s exposure and over 20 GRBs down to a $6times10^{-6}$ erg cm$^{-2}$ fluence and 10% polarization during a one-year observation.
A sensitive survey of the MeV gamma-ray sky is needed to understand important astrophysical problems such as gamma-ray bursts in the early universe, progenitors of Type Ia supernovae, and the nature of dark matter. However, the study has not progressed remarkably since the limited survey by COMPTEL onboard CGRO in the 1990s. Tanimori et al. have developed a Compton camera that tracks the trajectory of each recoil electron in addition to the information obtained by the conventional Compton cameras, leading to superior imaging. This Electron Tracking Compton Camera (ETCC) facilitates accurate reconstruction of the incoming direction of each MeV photon from a wide sky at ~degree angular resolution and with minimized particle background using trajectory information. The latest ETCC model, SMILE-2+, made successful astronomical observations during a day balloon flight in 2018 April and detected diffuse continuum and 511 keV annihilation line emission from the Galactic Center region at a high significance in ~2.5 hours. We believe that MeV observations from space with upgraded ETCCs will dramatically improve our knowledge of the MeV universe. We advocate for a space-based all-sky survey mission with multiple ETCCs onboard and detail its expected benefits.
Aimed at progress in MeV gamma-ray astronomy which has not yet been well-explored, Compton telescope missions with a variety of detector concepts have been proposed so far. One of the key techniques for these future missions is an event reconstruction algorithm that is able to determine the scattering orders of multiple Compton scattering events and to identify events in which gamma rays escape from the detectors before they deposit all of their energies. We propose a new algorithm that can identify whether the gamma rays escape from the detectors or not, in addition to the scattering order determination. This algorithm also corrects incoming gamma-ray energies for escape events. The developed algorithm is based on the maximum likelihood method, and we present a general formalism of likelihood functions describing physical interactions inside the detector. We also introduce several approximations in the calculation of the likelihood functions for efficient computation. For validation, we have applied the algorithm to simulation data of a Compton telescope using a liquid argon time projection chamber, which is a new type of Compton telescope proposed for the GRAMS mission, and have confirmed that it works successfully for up to 8-hit events. The proposed algorithm can be used for next-generation MeV gamma-ray missions featured by large-volume detectors, e.g., GRAMS and AMEGO.
255 - T. Tanimori , H. Kubo , A. Takada 2015
Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which are originated from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The recent major mission/instrument in the MeV band, Compton Gamma Ray Observatory/COMPTEL, which was Compton Camera (CC), detected mere $sim30$ persistent sources. It is in stark contrast with $sim$2000 sources in the GeV band. Here we report the performance of an Electron-Tracking Compton Camera (ETCC), and prove that it has a good potential to break through this stagnation in MeV gamma-ray astronomy. The ETCC provides all the parameters of Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx), which CCs cannot measure, is also obtained, and is found to be indeed helpful to reduce the background under conditions similar to space. Accordingly the significance in gamma detection is improved severalfold. On the other hand, SPD is essential to determine the point-spread function (PSF) quantitatively. The SPD resolution is improved close to the theoretical limit for multiple scattering of recoil electrons. With such a well-determined PSF, we demonstrate for the first time that it is possible to provide reliable sensitivity in Compton imaging without utilizing an optimization algorithm. As such, this study highlights the fundamental weak-points of CCs. In contrast we demonstrate the possibility of ETCC reaching the sensitivity below $1times10^{-12}$ erg cm$^{-2}$ s$^{-1}$ at 1 MeV.
The Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT) is the first realization of a liquid xenon time projection chamber for Compton imaging of MeV gamma-ray sources in astrophysics. By measuring the energy deposit and the three spatial coordinates of individual gamma-ray scattering points, the location of the source in the sky is inferred with Compton kinematics reconstruction. The angular resolution is determined by the detectors energy and spatial resolutions, as well as by the separation in space between the first and second scattering. The imaging response of LXeGRIT was established with gamma-rays from radioactive sources, during calibration and integration at the Columbia Astrophysics Laboratory, prior to the 2000 balloon flight mission. In this paper we describe in detail the various steps involved in imaging sources with LXeGRIT and present experimental results on angular resolution and other parameters which characterize its performance as a Compton telescope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا